簡易檢索 / 詳目顯示

研究生: 古凡峰
ku fan feng
論文名稱: 石油工業廢觸媒對砂漿材料性質之影響
指導教授: 許貫中
Hsu, Kung-Chung
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2000
畢業學年度: 88
語文別: 中文
中文關鍵詞: 廢觸媒波索蘭反應資源化
英文關鍵詞: spent catalyst, Pozzolanic reaction, take advantage
論文種類: 學術論文
相關次數: 點閱:131下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要
    本研究是針對中油公司煉油過程中產生廢觸媒的資源化利用,因為每天中油廢觸媒卸出量為2公噸,且往常都用掩埋的方法處理,所以對環境而言是一大的負擔。
    資源化利用的方向是添加在混凝土裡,因為廢觸媒的主要成分為Al2O3和SiO2,而其成分比例和有波索蘭效果的高嶺土相似, 所以可以應用X光粉末繞射分析(XRD)和固態NMR儀器來探討廢觸媒是否有波索蘭反應,接著由水化熱和初、終凝的凝結時間、抗壓強度和壓汞測孔儀(MIP)的壓汞孔隙率來研究添得觸媒對水泥漿體的材料性質的影響。
    研究結果顯示觸媒在水泥漿體裡會進行波索蘭反應,且其效果比矽灰來得好,因為用XRD和固態NMR儀器實驗分析得知觸媒的波索蘭反應時間比矽灰快,故對水泥漿體的抗壓強度和緻密性有比較正面性的幫助。觸媒的顆粒小且反應活性大,所以當添加在砂漿時會消耗大量的水,造成砂漿流動性變差, 故要提高水膠比和強塑劑的量來增加砂漿的流動性。但因觸媒的添加,砂漿黏度會比較大,使得砂和水泥漿體不會有析離現象出現,故砂漿流動和分布會比較均勻。
    初、終凝的時間會因添加觸媒在水泥漿體而縮短,其原因是觸媒會加速水泥的水化反應,使得水泥漿體很快就由可塑性變成硬固性。因此,廢觸媒可以應用在因要早點拆模而需要凝結時間較短且抗壓強度較大的混凝土工程上。

    ABSTRACT
    This study is aimed at the way to take advantage of spent catalyst produced in the process of oil-refining in Chinese Petroleum Corp. Since the capacity of spent catalyst from Chinese Petroleum Corp is 2 metric tons every day, and that it used to be buried becomes an encumbrance to our environments.
    The way to take advantage of spent catalyst is to add spent catalyst to concrete. Because the main components of spent catalyst are Al2O3 and SiO2, and it is similar to the components and proportions of kaolin having Pozzolanic reaction, and then we can use powder X-ray (XRD) and solid NMR instruments to probe into if spent catalyst has Pozzolanic reaction. After that, we use hydration heat, the setting time of initial setting and final setting, compressive strength, and mercury intrusion porosimetry of MIP to analyze the effect of adding catalyst to cement pastes.
    The result of this study shows catalyst proceeds Pozzolanic reaction in cement paste, and the effect is better than silica fume. By using XRD and solid NMR instruments to analyze, we get the Pozzolanic reaction of catalyst is faster than the one of silica fume and is positive to compressive strength and density the microstructures of cement paste. Pellets of catalyst are small and have big active reaction, so it will waste much water when added to mortars, and that makes the fluid of mortars become worse.
    In order to raise the fluid of mortars, we add more W/B and SP. The viscosity of mortars increases by adding catalyst, that makes sands and cement paste have no segregation, and the fluid and distribution of mortars will be more even.
    The time of initial setting and final setting will be shorter by adding catalyst to cement paste because catalyst speeds up the hydration reaction of cement and makes cement paste hard from plasticity soon. So, spent catalyst can be applied in concrete that needs shorter setting time and larger compressive strength to remove forms earlier.

    目錄 第一章 緒論----------------------------------------------1 1-1 研究動機------------------------------------------------------1 1-2 研究目的------------------------------------------------------1 1-3 研究方法------------------------------------------------------2 第二章 文獻回顧------------------------------------------3 2-1 沸石觸媒------------------------------------------------------3 2-2 水泥的組成與分類----------------------------------------------6 2-3 水泥的水化行為------------------------------------------------9 2-4 添加波索蘭材料對水泥水化行為之影響---------------------------12 2-5 強塑劑-------------------------------------------------------17 2-5-1 強塑劑的種類-------------------------------------------17 2-5-2 強塑劑的減水機理---------------------------------------18 2-5-3 強塑劑的坍度保持---------------------------------------18 2-6 水泥漿體之微觀結構-------------------------------------------20 2-6-1 水泥漿體之固相微觀結構---------------------------------21 2-6-2 水泥漿體中的非固相微觀結構-----------------------------24 2-7 核磁共振技術與在混凝土之應用---------------------------------27 第三章 實驗部分-----------------------------------------30 3-1 實驗材料-----------------------------------------------------30 3-2 實驗儀器-----------------------------------------------------33 3-3 實驗方法-----------------------------------------------------34 3-3-1 mini-slump cone擴散平均直徑之測試----------------------34 3-3-2 水泥漿抗壓試體之製備-----------------------------------34 3-3-3 NMR與XRD水泥漿試體製作--------------------------------35 第四章 實驗討論-----------------------------------------36 4-1 漿體新拌性質-------------------------------------------------36 4-1-1 迷你坍度流(Mini slump)-------------------------------36 4-1-2 實驗配比設計-------------------------------------------38 4-1-3 水化熱-------------------------------------------------43 4-1-4 水泥漿凝結時間-----------------------------------------45 4-2 漿體硬固性質-------------------------------------------------47 4-2-1 抗壓強度-----------------------------------------------47 4-2-2 MIP孔隙度分析------------------------------------------76 4-2-3 X光粉末繞射分析----------------------------------------78 4-2-4 NMR分析------------------------------------------------91 4-2-5 SEM觀測及分析-----------------------------------------102 第五章 結論--------------------------------------------107 第六章 參考資料----------------------------------------109 表目錄 表2-1 波特蘭水泥之主要成份及其性質------------------------------6 表2-2 波特蘭水泥之典型成份及性質--------------------------------7 表2-3 水泥熟料單礦物的水化特徵----------------------------------7 表2-4 各種成分對波特蘭水泥性質之影響 ---------------------------8 表2-5 波索蘭材料的成份和其在工程性上應用方向-------------------14 表2-6 水泥漿體之主要組成成份及其性質---------------------------21 表2-7 水泥漿體組成對漿體特性的影響-----------------------------22 表2-8 孔隙分類及其對混凝土性質之影響---------------------------25 表3-1 波特蘭第一型水泥化學成份分析-----------------------------30 表3-2 觸媒和矽灰成份-------------------------------------------31 表3-3 西螺砂之篩分析-------------------------------------------32 表4-1-1 不同觸媒或矽灰取代量的砂漿配比---------------------------38 表4-1-2 不同觸媒或矽灰取代量的砂漿配比---------------------------39 表4-1-3 不同觸媒或矽灰取代量的砂漿配比---------------------------39 表4-1-4 不同觸媒或矽灰取代量的砂漿配比---------------------------40 表4-1-5 不同觸媒或矽灰取代量的砂漿配比---------------------------40 表4-1-6 不同觸媒或矽灰取代量的砂漿配比---------------------------41 圖目錄 圖2-1 沸石之二級構成單元--------------------------------------4 圖2-2 方鈉石群晶體--------------------------------------------5 圖2-3(a) 沸石A之結構--------------------------------------------5 圖2-3(b) 沸石X及Y之結構----------------------------------------5 圖2-4 水泥水化過程放熱速率及水泥顆粒之水化過程---------------11 圖2-5(a) 矽酸三鈣和波索蘭物質水化反應過程-----------------------16 圖2-5(b) 鋁酸三鈣和波索蘭物質水化反應過程-----------------------16 圖2-6 強塑劑SNF分散和保持坍度的作用圖-----------------------19 圖2-7 波特蘭水泥漿體微觀結構之示意圖-------------------------20 圖2-8 添加15﹪矽灰水化七天後之29Si NMR光譜圖(W/C+S=0.7)----29 圖3-1(a) 水泥放大1000倍----------------------------------------30 圖3-1(b) 水泥放大6000倍----------------------------------------30 圖3-2(a) 觸媒放大1000倍----------------------------------------31 圖3-2(b) 觸媒放大6000倍----------------------------------------31 圖3-3(a) 矽灰放大35倍------------------------------------------31 圖3-3(b) 矽灰放大8500倍----------------------------------------31 圖3-4 磺酸化奈甲醛縮合物(SNF)分子結構------------------------32 圖3-5 迷你坍度錐---------------------------------------------33 圖4-1-1 不同配比的漿體隨SNF劑量改變流度-----------------------37 圖4-1-2 觸媒、矽灰取代水泥對砂漿中SNF劑量的變化---------------42 圖4-1-3 水泥漿的溫度隨著水化時間變化---------------------------43 圖4-1-4 水泥漿的溫度隨著水化時間變化---------------------------44 圖4-1-5 水泥漿的溫度隨著水化時間變化---------------------------44 圖4-1-6 觸媒取代量不同的水泥漿初終凝變化-----------------------45 圖4-1-7 觸媒取代量不同的水泥漿初終凝變化-----------------------46 圖4-1-8 觸媒取代量不同的水泥漿初終凝變-------------------------46 圖4-2-1 不同SNF劑量流動值-------------------------------------48 圖4-2-2 不同SNF劑量下砂漿抗壓強度變化-------------------------48 圖4-2-3 不同SNF劑量下觸媒取代水泥之砂漿流動值-----------------49 圖4-2-4 不同SNF劑量下觸媒取代水泥之砂漿抗壓強度變化-----------49 圖4-2-5 不同SNF劑量矽灰取代水泥之砂漿流動值-------------------50 圖4-2-6 不同SNF劑量下矽灰取代水泥之砂漿抗壓強度變化-----------50 圖4-2-7 不同水膠比純水泥砂漿抗壓強度變化-----------------------52 圖4-2-8 同樣的工作度的條件下用觸媒和矽灰取代水泥沙漿抗壓強度值的 變化------------------------------------------------54 圖4-2-9 同樣的工作度的條件下用觸媒和矽灰取代水泥沙漿抗壓強度值的 變化------------------------------------------------54 圖4-2-10 同樣的工作度的條件下用觸媒和矽灰取代水泥沙漿抗壓強度值的 變化------------------------------------------------55 圖4-2-11 不同觸媒取代量所造成水泥漿體強度變化------------------56 圖4-2-12(a) 不同觸媒取代量之砂漿抗壓強度比值--------------------57 圖4-2-12(b) 不同觸媒取代量之砂漿抗壓強度------------------------57 圖4-2-13(a) 不同觸媒取代量之砂漿抗壓強度比值--------------------58 圖4-2-13(b) 不同觸媒取代量之砂漿抗壓強度------------------------59 圖4-2-14(a) 不同觸媒取代量之砂漿抗壓強度比值--------------------59 圖4-2-14(b) 不同觸媒取代量之砂漿抗壓強度------------------------60 圖4-2-15(a) 不同矽灰取代量之砂漿抗壓強度比值--------------------62 圖4-2-15(b) 不同矽灰取代量之砂漿抗壓強度------------------------62 圖4-2-16(a) 不同矽灰取代量之砂漿抗壓強度比值--------------------63 圖4-2-16(b) 不同矽灰取代量之砂漿抗壓強度------------------------63 圖4-2-17(a) 不同矽灰取代量之砂漿抗壓強度比值--------------------64 圖4-2-17(b) 不同矽灰取代量之砂漿抗壓強度------------------------64 圖4-2-18 用不同觸媒和矽灰的量取代水泥,造成砂漿抗壓強度的差異--65 圖4-2-19 用不同觸媒和矽灰的量取代水泥,造成砂漿抗壓強度的差異--66 圖4-2-20 用不同觸媒和矽灰的量取代水泥,造成抗壓強度的差異------66 圖4-2-21 用不同觸媒的量取代水泥,造成砂漿抗壓強度比值(SNF0.5%)-67 圖4-2-22 用不同觸媒的量取代水泥,造成砂漿抗壓強度比值(SNF0.8%)-68 圖4-2-23 用不同觸媒的量取代水泥,造成砂漿抗壓強度比值(SNF1.1%)-69 圖4-2-24 含不同劑量SNF的5%觸媒取代量砂漿抗壓強度比值----------70 圖4-2-25 含不同SNF的劑量的砂漿流度值---------------------------70 圖4-2-26 含不同劑量SNF造成10%觸媒取代量砂漿抗壓強度比值-------71 圖4-2-27 含不同SNF的劑量的砂漿流度值--------------------------72 圖4-2-28 不同矽灰取代量的砂漿抗壓強度比值(SNF0.5%)-------------73 圖4-2-29 不同矽灰取代量的砂漿抗壓強度比值(SNF0.8%)-------------73 圖4-2-30 不同矽灰取代量的砂漿抗壓強度比值(SNF1.1%)-------------74 圖4-2-31 含不同劑量SNF的5%矽灰取代量砂漿抗壓強度比值----------75 圖4-2-32 含不同劑量SNF的5%矽灰取代量砂漿抗壓強度比值----------75 圖4-2-33 水泥砂漿孔隙體積和抗壓強度比較------------------------77 圖4-2-34 由一個晶格所生的繞射--------------------------------78 圖4-2-35(a) 矽灰和純CH反應0天---------------------------------80 圖4-2-35(b) 矽灰和純CH反應7天---------------------------------80 圖4-2-35(c) 矽灰和純CH反應28天--------------------------------81 圖4-2-36(a) 觸媒和純CH反應0天---------------------------------82 圖4-2-36(b) 觸媒和純CH反應7天---------------------------------82 圖4-2-36(c) 觸媒和純CH反應28天--------------------------------83 圖4-2-37(a) 水泥水化反應3天------------------------------------83 圖4-2-37(b) 水泥水化反應28天-----------------------------------84 圖4-2-38(a) 觸媒取代量30%水泥水化反應3天-----------------------85 圖4-2-38(b) 觸媒取代量30%水泥水化反應7天-----------------------85 圖4-2-38(c) 觸媒取代量30%水泥水化反應28天----------------------86 圖4-2-39(a) 觸媒取代量60%水泥水化反應1天-----------------------87 圖4-2-39(b) 觸媒取代量60%水泥水化反應3天-----------------------87 圖4-2-39(c) 觸媒取代量60%水泥水化反應7天-----------------------88 圖4-2-39(d) 觸媒取代量60%水泥水化反應28天----------------------88 圖4-2-40(a) 矽灰取代量30%水泥水化反應3天-----------------------89 圖4-2-40(b) 矽灰取代量30%水泥水化反應7天-----------------------90 圖4-2-40(c) 矽灰取代量30%水泥水化反應28天----------------------90 圖4-2-41 觸媒未反應的NMR圖-----------------------------------91 圖4-2-42 觸媒和氫氧化鈣混合物--------------------------------92 圖4-2-43 觸媒和氫氧化鈣反應7天圖----------------------------93 圖4-2-44(a)(b)(c) 鋁在矽聚合物的相對位置圖-----------------------94 圖4-2-45 鋁在矽聚合物的相對位置圖----------------------------95 圖4-2-46 觸媒和氫氧化鈣反應28天圖---------------------------95 圖4-2-47 未反應的矽灰NMR圖----------------------------------96 圖4-2-48 矽灰和氫氧化鈣反應7天時的NMR圖--------------------97 圖4-2-49 矽灰和氫氧化鈣反應28天時的NMR圖-------------------98 圖4-2-50 水泥未反應的NMR圖----------------------------------98 圖4-2-51 水泥試體水化反應28天的NMR圖-----------------------99 圖4-2-52 觸媒取代30%水泥試體水化反應28天的NMR圖-----------100 圖4-2-53 30%矽灰取代水泥試體水化反應28天的NMR圖------------101 CH:矽灰=0.3:0.7-------------------------------------------------102 圖4-2-54(a) 7天1000倍、4500倍---------------------------------102 圖4-2-54(b) 28天1000倍、4500倍--------------------------------102 CH:觸媒=0.3:0.7-------------------------------------------------103 圖4-2-55(a) 7天1000倍、6000倍---------------------------------103 圖4-2-55(b) 28天1000倍、6000倍--------------------------------103 觸媒:水泥=0.3:0.7-----------------------------------------------104 圖4-2-56(a) 3天1000倍、6000倍---------------------------------104 圖4-2-56(b) 7天1000倍、6000倍---------------------------------104 圖4-2-56(c) 28天1000倍、6000倍--------------------------------104 矽灰:水泥=0.3:0.7-----------------------------------------------105 圖4-2-57(a) 3天1000倍、6000倍---------------------------------105 圖4-2-57(b) 7天1000倍、6000倍---------------------------------105 圖4-2-57(c) 28天1000倍、6000倍--------------------------------105 水泥:觸媒=1:0---------------------------------------------------106 圖4-2-58(a) 3天1000倍、6000倍----------------------------------106 圖4-2-58(b) 7天1000倍、6000倍----------------------------------106 圖4-2-58(c) 28天1000倍、6000倍---------------------------------106

    參考資料
    1. J. Pera and A. Amrouz, “Development of Highly Reactive Metakaolin from Paper Sludge”, Advanced Cement Based Materials 1998, 7, 49-56.
    2. M. Oriol and J. Pera, “Pozzolanic Activity of Metakaolin under Microwave Treatment”, Cement and Concrete Research, Vol. 25, No. 2, pp. 265-270, 1995.
    3. Y. Fu, J. Ding, and J.J. Beaudoin, “Zeolite-Based Additives for High Alumina Cement Products”, Advanced Cement Based Materials 1996, 3, 37-42.
    4. 李定粵, 觸媒的原理與應用, 正中, 1991.
    5. 吳榮宗, 工業觸媒概論, 國興, 1998.
    6. 胡興中, 觸媒原理與應用, 高立, 1998.
    7. 張金海, 非均勻反應觸媒特性與實效應用, 臺灣復文興業, 1994.
    8. P.K. Mehta, “Concrete”, Prentice-Hall, New Jersey, 1986.
    9. 王景信,水泥之組成、性質及水化作用介紹,工業簡訊, 經濟部工業局, 第二十二卷, 第六期, pp. 16-29, 1992.
    10. S. Mindess and J. F. Young, “Concrete”, Prentice-Hall, New Jersey, 1981.
    11. D. Viehland, J.F. Li, L.J. Yuan, and Z. Xu, “Mesostructure of Calcium Silicate Hydrate(C-S-H)Gels in Portland Cement Paste:Short-Range Ordering, Nanocrystallinity, and Local Compositional Order”, Journal of the American Ceramic Society-Viehland et al. Vol. 79, No. 7, pp. 1731-1744, 1996.
    12. F.P. Glasser, “The Role of Sulfate Mineralogy and Cure Temperature in Delayed Ettringite Formation”, Cement and Concrete Composites 18, pp. 187-193, 1996.
    13. S. Garrault-Gauffinet, A. Nonat, “Experimental Investigation of Calcium Silicate Hydrate(C-S-H)Nucleation”, Journal of Crystal Growth 200, pp. 565-574, 1999.
    14. A. Emanuelson and S. Hansen, “Distribution of Iron among Ferrite Hydrates”, Cement and Concrete Research, Vol. 27, No. 8, pp. 1167-1177, 1997.
    15. 常正之, 混凝土施工, 三民, 1996.
    16. S.M. Clark, G.R. Morrison, W.D. Shi, “The Use of Scanning Transmission X-Ray Microscopy for the Real-Time Study of Cement Hydration”, Cement and Concrete Research 29, pp. 1099-1102, 1999.
    17. 黃忠信, 土木材料, 三民, 1998.
    18. 黃兆龍, 混凝土性質與行為, 詹氏, 1997.
    19. R.A. Helmuth, “Fly Ash in Cement and Concrete”, Portland Cement Association, 1987.
    20. 王檻勝, 水泥性質對強塑劑使用成效影響之研究, 碩士論文, 國立中央大學土木研究所, 1994.
    21. 徐宏杰, 飛灰吸附特性對附加劑使用成效影響之研究, 碩士論文, 國立中央大學土木研究所, 1994.
    22. 邱奕遷, 林志棟, 再生瀝青流變行為與混凝土力學性質之研究, 1995年瀝青混凝土路面及材料研討會論文集, 中壢, pp. 53-78, 1995.
    23. 陳忠元, 強塑劑對水泥添加波蜀蘭材料之早期行為影響, 碩士論文, 國立中央大學土木研究所, 1998.
    24. P.C. Aitcin, “Cement/Superplasticizer Compatibility”, 高性能混凝土新近發展與應用, 台北, pp. 80-105, 1977.
    25. 混凝土施工自動化-化學摻料、配比、品管與施工研討, 台灣營建研究院, 1998.
    26. 潘致遠, 添加矽灰及爐石對水泥薄漿工程性質之影響研究, 碩士論文, 國立中央大學土木研究所, 1999.
    27. 江舜元, 化學摻料基本性質的分析及對水泥水化作用之影響, 碩士論文, 國立臺灣師範大學化學研究所, 1996.
    28. H.S. Pietersen, A.P.M. Kentgen, G.H. Nachtegaal, W.S. Veeman and J.M. Biuen, “The Mechanism of Blended Cement:A 29 Si NMR Study”, ACI SP 132-144, PP. 758-812, 1991.
    29. H. Justnes, I. Meland, J.O. Bjoergum, J. Krane and T. Skjetne, “Nuclear Magnetic Resonance(NMR)-a Powerful Tool in Cement and Concrete Research”, Advances in Cement Research, Vol. 3, No. 11, pp. 105-110, 1990.
    30. G. Parry-Jones, A.J. Al-Tarrib and A.I. Al-Mana, “Evaluation of Degree of Hydration in Concrete Using 29Si Magic Angle Spinning NMR in Solids”, Cement and Concrete Research, Vol. 18, No. 2, pp. 229-234, 1988.
    31. E. Lippmaa, M. Magi, M. Tarmak, W. Wieker and A. R. Grimmer, “A High Resolution 29Si NMR Study of the Hydration of Tricalciumsilicate”, Cement and Concrete Research, Vol. 12, No. 5, pp. 597-602, 1982.
    32. R.A. Hanna, P.J. Barrie, C.R. Cheeseman, C.D. Hills, P.M. Buchler and R. Perry, “Solid State 29Si and 27Al NMR and Ftir Study of Cement Pastes Containing Industrial Wastes and Organics”, Cement and Concrete Research, Vol. 25, No. 7, pp. 1435-1444, 1995.
    33. X. Cong and R. J. Kirkpatrick, “29Si and 17O NMR Investigation of the Structure of Some Crystalline Calcium Silicate Hydrates”, Advanced Cement Based Materials 1996, 3, 133-143.
    34. S. Shaw, S.M. Clark, C.M.B. Henderson, “Hydrothermal Formation of the Calcium Silicate Hydrates, Tobermorite(Ca5Si6O16(OH)2.4H2O)and Xonotlite(Ca6Si6O17(OH)2):an in Situ Synchrotron Study”, Chemical Geology 167, pp. 129-140, 2000.
    35. A.K. Suryavanshi, J.D. Scantlebury, and S.B. Lyon, “Mechanism of Friedel’s Salt Formation in Cements Rich in Tri-Calcium Aluminate”, Cement and Concrete Research, Vol. 26, No. 5, pp. 717-727, 1996.
    36. Rafael Talero, “Comparative XRD Analysis Ettringite Originating from Pozzolan and from Portland Cement”, Cement and Concrete Research, Vol. 26, No. 8, pp. 1277-1283, 1996.
    37. I. Odler, J. Colán-Subauste, “Investigations on Cement Expansion Associated with Ettringite Formation”, Cement and Concrete Research 29, pp. 731-735, 1999.
    38. Q. Zhang, F. Saito, “Sonochemical Synthesis of Ettringite from a Powder Mixture Suspended in Water”, Powder Technology 107, pp. 43-47, 2000.
    39. S. Masse, H. Zanni, J. Lecourtier, J.C. Roussel, A. Rivereau, “High Temperature Hydration of Tricalcium Silicate, the Major Component of Portland Cement:a Silicon-29 NMR Contribution”, J Chim Phys 92, pp. 1861-1866, 1995.
    40. Hu Shuguang, Li Yue, “Research on the Hydration, Hardening Mechanism, and Microstructure of High Performance Expansive Concrete”, Cement and Concrete Research 29, pp. 1013-1017, 1999.
    41. M.H. Zhang and V.M. Malhotra, “Characteristics of a Thermally Activated Alumino-Silicate Pozzolanic Material and its Use in Concrete”, Cement and Concrete Research, Vol. 25, No. 8, pp. 1713-1725, 1995.
    42. 黃兆龍, 混凝土材料品質控制試驗, 詹氏, 1995.
    43. M. Yousuf A. Mollah, Padmavathy Palta, Thomas R. Hess, Rajan K. Vempati and David L. Cocke, “Chemical and Physical Effects of Sodium Lignosulfonate Superplasticizer on the Hydration of Portland Cement and Solidification/Stabilization Consequences”, Cement and Concrete Research, Vol. 25, No. 3, pp. 671-682, 1995.
    44. N.B. Singh, R. Sarvahi and N.P. Singh, “Effect of Superplasticizers on the Hydration of Cement”, C.C.R., Vol. 22, pp. 725-735, 1992.
    45. A.A. Al-Manaseer and L. Douglas Keil, “Physical Properties of Cement Grout Containing Silica Fume and Superplasticizer”, ACI Materials Journal, March-April 1992.
    46. N.B. Singh, Reetika Sarvahi and N.P. Singh, “Effect of Superplasticizers on the Hydration of Cement”, Cement and Concrete Research, Vol. 22, pp. 725-735, 1992.
    47. M. Shrikavand and R. Baggott, “Effects of Superplasticizer on Workability and Flexural Strength of Autoclaved Calcium Silicates”, Cement and Concrete Research, Vol. 25, No. 7, pp. 1512-1522, 1995.
    48. K.L. Scrivener, A. Bentur and P.L. Pratt, “Quantitative Characterization of the Transition Zone in High Strength Concrete”, Advanced in Cement Research Vol. 1, No. 4, October, 1988
    49. S. Wild, B.B. Sabir, and J.M. Khatib, “Factors Influencing Strength Development of Concrete Containing Silica Fume”, Cement and Concrete Research, Vol. 25, No. 7, pp. 1567-1580, 1995.
    50. D.R.G. Mitchell, I. Hinczak, and R.A. Day, “Interaction of Silica Fume with Calcium Hydroxide Solutions and Hydrated Cement Pastes”, Cement and Concrete Research, Vol. 28, No. 11, pp. 1571-1584, 1998.
    51. Houssam A. Toutanji, “The Influence of Silica Fume on the Compressive Strength of Cement Paste and Mortar”, Cement and Concrete Research, Vol. 25, No. 7, pp. 1591-1602, 1995.
    52. Kefeng Tan and Odd E. Gjorv, “Performance of Concrete under Different Curing Conditions”, Cement and Concrete Research, Vol. 26, No. 3, pp. 355-361, 1996.
    53. F. Curcio, B.A. DeAngelis, and S. Pagliolico, “Metakaolin as a Pozzolanic Microfiller for High-Performance Mortars”, Cement and Concrete Research, Vol. 28, No. 6, pp. 803-809, 1998.
    54. M.I. Sánchez de Rojas and M. Frías, “The Pozzolanic Activity of Different Materials, its Influence on the Hydration Heat in Mortars”, Cement and Concrete Research, Vol. 26, No. 2, pp. 203-213, 1996.
    55. S. Wild, J.M. Khatib and A. Jones, “Relative Strength, Pozzolanic Activity and Cement Hydration in Superplasticised Metakaolin Concrete”, Cement and Concrete Research, Vol. 26, No. 10, pp. 1537-1544, 1996.
    56. M.I. Sánchez de Rojas, J. Rivera, M. Frías, “Influence of the Microsilica State on Pozzolanic Reaction Rate”, Cement and Concrete Research 29, pp. 945-949, 1999.
    57. M. Frías, J. Cabrera, “Pore Size Distribution and Degree of Hydration of Metakaolin-Cement Pastes”, Cement and Concrete Research 30, pp. 561-569, 2000.
    58. J.M. Khatib and S. Wild, “Pore Size Distribution of Metakaolin Paste”, Cement and Concrete Research, Vol. 26, No. 10, pp. 1545-1553, 1996.
    59. K. O. Kjellsen, E. Helsing Atlassi, “Pore Structure of Cement Silica Fume Systems Presence of Hollow-Shell Pores”, Cement and Concrete Research 29, pp. 133-142, 1999.
    60. 汪建民, 材料分析, 中國材料科學學會, 1998.
    61. 許樹恩, 吳泰伯, X光繞射原理與材料結構分析, 國家科學委員會精密儀器發展中心, 1993.
    62. H. Motzet, H. Pőllmann, “Synthesis and Characterisation of Sulfite-Containing AFm Phases in the System CaO-Al2O3-SO2-H2O”, Cement and Concrete Research 29, pp. 1005-1011, 1999.
    63. Marcel Cheyrezy, Vincent Maret, Laurent Frouin, “Microstructural Analysis of RPC(Reactive Powder Concrete), Cement and Concrete Research, Vol. 25, No. 7, pp. 1491-1500, 1995.
    64. A.K. Suryavanshi, J.D. Scantlebury and S.B. Lyon, “The Binding of Chloride Ions by Sulphate Resistant Portland Cement”, Cement and Concrete Research, Vol. 25, No. 3, pp. 581-592, 1995.
    65. R.A. Olson, P.D. Tennis, D. Bonen, H.M. Jennings, T.O. Mason, B.J. Christensen, A.R. Brough, G.K. Sun, J.F. Young, “Early Containment of High-Alkaline Solution Simulating Low-Level Radioactive Waste in Blended Cement”, Journal of Hazardous Materials 52, pp. 223-236, 1997.
    66. M. Saad, S.A. Abo-El-Enein, G.B. Hanna and M.F. Kotkata, “Effect of Temperature on Physical and Mechanical Properties of Concrete Containing Silica Fume”, Cement and Concrete Research, Vol. 26, No. 5, pp. 669-675, 1996.
    67. J. Ding, Y. Fu, J.J. Beaudoin, “Strätlingite Formation in High Alumina Cement-Silica Fume Systems:Significance of Sodium Ions”, Cement and Concrete Research, Vol. 25, No. 6, pp. 1311-1319, 1995.
    68. Yan Fu, Jian Ding, J.J. Beaudoin, “Effect of Different Calcium Aluminate Hydrates on Ettringite Formation and Expansion of High Alumina Cement-Based Expansive Cement Pastes”, Cement and Concrete Research, Vol. 26, No. 3, pp. 417-426, 1996.
    69. M.Y.A. Mollah, Wenhong Yu, Robert Schennach, David L. Cocke, “A Fourier Transform Infrared Spectroscopic Investigation of the Early Hydration of Portland Cement and the Influence of Sodium Lignosulfonate”, Cement and Concrete Research 30, pp. 267-273, 2000.
    70. M. Collepardi, S. Monosi, P. Piccioli, “The Influence of Pozzolanic Materials on the Mechanical Stability of Aluminous Cement”, Cement and Concrete Research, Vol. 25, No. 5, pp. 961-968, 1995.
    71. M.U.K. Afridi, Y. Ohama, K. Demura, and M.Z. Iqbal, “Hydrogarnet-Type Cubic Crystals in Polymer-Modified Mortars”, Cement and Concrete Research, Vol. 27, No. 12, pp. 1787-1789, 1997.
    72. Anna Emanuelson, Eric Henderson and Staffan Hansen, “Hydration of Ferrite Ca2AlFeO5 in the Presence of Sulphates and Bases”, Cement and Concrete Research, Vol. 26, No. 11, pp. 1689-1694, 1996.
    73. C. Shi, “Early Microstructure Development of Activated Lime-Fly Ash Pastes”, Cement and Concrete Research, Vol. 26, No. 9, pp. 1351-1359, 1996.
    74. J. Zelić, R. Krstulović, E. Tkalčec, P. Krolo, “The Properties of Portland Cement-Limestone-Silica Fume Mortars”, Cement and Concrete Research 30, pp. 145-152, 2000.
    75. M.D. Cohen and Arnon Bentur, “Durability of Portland Cement-Silica Fume Pastes in Magnesium Sulfate and Sodium Sulfate Solutions”, ACI Materials Journal, May-June 1988.
    76. L. Shizong, Wu Yanrong and Liu Chen, “Investigation on the Formation of Ettringite in the Presence of BaO”, Cement and Concrete Research, Vol. 25, No. 7, pp. 1417-1422, 1995.
    77. B.A. Clark, P.W. Brown, “The Formation of Calcium Sulfoaluminate Hydrate Compounds Part Ⅱ”, Cement and Concrete Research 30, pp. 233-240, 2000.
    78. X. Cong and R.J. Kirkpatrick, “29Si MAS NMR Study of the Structure of Calcium Silicate Hydrate”, Advanced Cement Based Materials 1996, 3, 144-156.
    79. J. F. Young, “Investigations of Calcium Silicate Hydrate Structure Using Silicon-29 Nuclear Magnetic Resonance Spectroscopy”, Communications of the American Ceramic Society, C-118-C-120, 1988.
    80. M. Tsuji, S. Komarn, and P. Malla, “Substituted Tobermorites:27Al and 29Si MASNMR, Cation Exchange, and Water Sorption Studies”, Journal of the American Ceramic Society-Tsuji et al. Vol. 74, No. 2, pp. 274-279, 1991.
    81. I.G. Richardson, A.R. Brough, G.W. Groves and C.M. Dobson, “The Characterization of Hardened Alkali-Activated Blast-Furnace Slag Pastes and the Nature of the Calcium Silicate Hydrate(C-S-H)Phase”, Cement and Concrete Research, Vol. 24, No. 5, pp. 813-829, 1994.
    82. I. G. Richardson, A. R. Brough, R. Brydson, G. W. Groves, and C. M. Dobson, “Location of Aluminum in Substituted Calcium Silicate Hydrate(C-S-H)Gels as Determined by 29Si and 27Al NMR and EELS”, Journal of the American Ceramic Society-Richardson et al. Vol. 76, No. 9, pp. 2285-2288, 1993.
    83. I.G. Richardson, “The Nature of C-S-H in Hardened Cements”, Cement and Concrete Research 29, pp. 1131-1147, 1999.
    84. P. J. Schilling, L. G. Butler, Amitava Roy, and Harvill C. Eaton, ”29Si and 27Al MAS-NMR of NaOH-Activated Blast-Furnace Slag”, Journal of the American Ceramic Society-Schilling et al. Vol. 77, No. 9, pp. 2363-2368, 1994.
    85. P. Lu, G. Sun, and J. F. Young, “Phase Composition of Hydrated DSP Cement Pastes”, Journal of the American Ceramic Society-Lu et al. Vol. 76, No. 4, pp. 1003-1007, 1993.
    86. H. Zanni, R. Rassem-Bertolo, S. Masse, L. Fernandez, P. Nieto, and B. Bresson, “A Spectroscopic NMR Investigation of the Calcium Silicate Hydrates Present in Cement and Concrete”, Magnetic Resonance Imaging, Vol. 14, Nos. 7/8, pp. 827-831, 1996.
    87. S. Stöber, H. Pöllmann, “Synthesis of a Lamellar Calcium Aluminate Hydrate(AFm Phase)Containing Benzenesulfonic Acid Ions”, Cement and Concrete Research 29, pp. 1841-1845, 1999.

    無法下載圖示
    QR CODE