簡易檢索 / 詳目顯示

研究生: 劉亞汶
Yea-Wenn Liou
論文名稱: 含鐵化合物之光電化學性質研究
指導教授: 王忠茂
Wang, Chong-Mou
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
畢業學年度: 87
語文別: 中文
論文頁數: 141
中文關鍵詞: 光電化學
英文關鍵詞: iron, photoelectrochemistry
論文種類: 學術論文
相關次數: 點閱:161下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘 要
    本實驗將具有電化學活性之iron(Ⅱ) tris(1,10-phenanthroline)(簡寫為Fe(phen)32+)及敏光物質9-methylacridinium (簡寫為AcH+)交換至沸石(Zeolite Y,NaY)的孔洞中,並將其鋪設於二氧化錫(ITO)電極上,其外再以Polystyrene(簡寫為PS)包覆,即完成無銀感光薄膜之製備。此修飾電極(簡寫為ITO/NaY/AcH+/Fe(phen)32+/PS)在pH 4的溶液中、電壓為+0.3 V vs. SCE及照光時可催化N,N-diethyl-2-methyl-1,4-phenylenediamine(簡寫為DEPD)之氧化,並與α-naphthol發生偶合反應,而於電極表面上形成藍色的產物-Indophenol blue。
    本實驗也製備Ferric N,N'-bis(salicylidene)ethylenediamine chloride(簡寫為Fe(Salen)Cl),並以循環伏安法分析其電化學性質,實驗顯示此化合物可穩定存在,其生成常數為7.1×1025 M-1;在非水溶液中,Fe(Salen)+可催化氧氣之還原,吾人便依此特性設計一氧氣偵測電極(簡稱ITO/Fe(Salen)+修飾電極),於pH 7水溶液中偵測氧氣,其靈敏度為70.7 μA/mM O2。此外,ITO/Fe(Salen)+修飾電極亦可催化過氧化氫之還原,其催化反應符合EC' mechanism及薄層電池(Thin-layer cell)模式,由實驗結果顯示:Fe(Salen)+催化過氧化氫還原的反應速率常數約為4400 M-1s-1,若將葡萄糖氧化酵素(Glucose Oxidase,簡稱GOx)固定於ITO/Fe(Salen)+修飾電極表面,此電極可於飽和氧氣溶液中,偵測葡萄糖之濃度,因此可作為葡萄糖偵測電極之用。實驗結果也顯示:ITO/Fe(Salen)+/Gox修飾電極對葡萄糖的偵測線性範圍為10-2~10-4 M,偵測極限約為10-4 M。此外,Fe(Salen)+的電子轉移與溶液的pH值有關,因此可用以分析水溶液中的氫離子濃度,其線性範圍為2<pH<10,靈敏度為-41 mV/pH。
    本實驗也對Iron(Ⅱ) tris(5-amino-1,10-phenanthroline)(簡寫為Fe(NH2-phen)32+)之電化學性質加以研究,實驗結果顯示:此化合物可以電化學氧化方式聚合於碳電極表面上(簡稱glassy carbon/Fe(NH2-phen)32+修飾電極)。此電極對水溶液中的氫離子濃度極為敏感,其還原電位隨溶液pH值增加而向負電位偏移,靈敏度為-39.8 mV/pH,有效線性範圍為1<pH<10。由於Fe(NH2-phen)32+的形式電位(formal potential)可隨溶液的pH值變化而偏移,因此可藉以控制電極與溶液間的電子傳遞行為。此外,實驗也發現Methyl viologen(簡寫為MV2+)可特別吸附於Fe(NH2-phen)32+薄膜上,根據電化學石英震盪天平(Electrochemical quartz crystal microbalance,簡寫為EQCM)之研究,MV2+可能先吸附於膜層表面繼而進入膜層之內,因而造成電極表面質量下降繼而增加。

    Abstract
    In this thesis, iron-containing particles or species, such as iron-containing clays (denoted clay), iron-containing zeolites (denoted NaY/Fe2+), ferric
    N,N'-bis(salicylidene)ethylenediamine chloride (denoted Fe(Salen)Cl), and iron tris(5-NH2-1,10-phenanthroline) (denoted Fe(NH2-phen)2+) have been investigated for their potential in phototoelectrochemical applications.
    Experimental results showed that indophenol blue can be formed on the surface of the modified electrodes made with iron-containing clay or zeolite Y particles and
    9-methylacridinium (AcH+) in the solution containing
    α-naphthol and N,N-diethyl-1,4-phenylenediamine (DEPD) during photo illumination. A non-silver based photographic film was thus developed.
    Fe(Salen)+ species has been immobilized on ITO glass for analyzing the contents of oxygen and hydrogen peroxide in aqueous solutions. Fe(Salen)+ showed a remarkable effect in mediating the reduction of oxygen and H2O2 at ambient conditions. For oxygen, the detection limit at pH 7 is nearly 0.4 mM; a linear calibration ranging from 0.4 to 5 mM was obtained. For H2O2, Fe(Salen)+ showed an EC' catalytical mechanism for the reduction of H2O2; the pseudo-first order reaction rate constant at pH 7 was estimated to be 4400 M-1s-1.
    Based on this result, a glucose biosensor was derived. After being incoporated with glucose oxidase (GOx), the Fe(Salen)+ modified electrode displayed a remarkable sensitivity to glucose; the detection limit was about 0.1 mM at pH 7; the linear calibration curve covers a range of 0.1 - 15 mM. Besides, we also found that the formal potential of Fe(Salen)+ is very sensitive to the solution pH; a linear calibration curve covering 2 <pH<10 was thus obtained.
    Experimental results also showed that Fe(NH2-phen)2+ could be polymerized on the surface of glassy carbon, ITO glass and Au electrodes, and that the formal potential of the polymerized Fe(NH2-phen)2+ is very sensitive to the solution pH. Because of these effects, the Fe(NH2-phen)2+ modified electrode can be used to gate the electron transfer reaction taking place between the solution and the electrode. Although the redox reaction of methyl viologen (MV2+) should be blocked by the energetics of Fe(NH2-phen)2+, EQCM experiments suggested that MV2+ might be specifically adsorbed on the Fe(NH2-phen)2+ film through two stages, i.e., firstly, on the surface, and then into the Fe(NH2-phen)2+ film.

    目 錄 圖目錄 ··························· Ⅰ 表目錄 ··························· Ⅷ 中文摘要 ·························· 1 英文摘要 ·························· 3 第一章 緒論 ························ 6 1-1 感光薄膜之反應機構 ··················· 6 1-2 黏土微粒之介紹 ····················· 9 1-3 沸石之介紹 ······················· 11 1-4 Schiff-base 過渡金屬離子化合物之簡介 ·········· 14 1-5 環糊精之簡介 ······················ 19 第二章 實驗 ························ 22 2-1 化學藥品 ························ 22 2-2 實驗儀器 ························ 25 2-3 沸石的前處理及製備 ··················· 27 2-4 Fe(Salen)+之合成 ···················· 28 2-5 Fe(NH2-phen)32+之合成·················· 29 2-6 電極之前處理及製備 ··················· 30 2-7 方波伏安法 ······················· 35 2-8 溶液pH值偵測之實驗裝置 ················· 36 2-9 電化學石英震盪天平 ··················· 37 第三章 感光薄膜材料之研究 ················· 41 3-1 含鐵黏土修飾電極對DEPD氧化之催化反應 ·········· 41 3-2 含鐵沸石對indophenol blue生成之探討 ·········· 51 3-3 在ITO/NaY/Fe(phen)32+/PS修飾電極上生成藍色影像之 最佳化條件 ······················· 58 3-4 ITO/NaY/AcH+/Fe(phen)32+/PS修飾電極製備感光薄膜之 應用 ·························· 63 第四章 鐵與Schiff-base錯合物性質之研究 ··········· 65 4-1 鐵與H2Salen錯合物生成常數之計算 ············ 65 4-2 Fe(Salen)+對氧氣之偵測 ················· 68 4-3 Fe(Salen)+與β-CD之平衡反應 ·············· 75 4-4 Fe(Salen)+修飾電極對過氧化氫之偵測 ··········· 86 4-5 Fe(Salen)+修飾電極對葡萄糖之偵測應用 ·········· 94 4-6 Fe(Salen)+修飾電極對pH值之偵測 ·············104 第五章 Fe(NH2-phen)32+聚合膜修飾電極對pH值之偵測及應用 ···110 5-1 Fe(NH2-phen)32+聚合膜之製備與探討 ···········110 5-2 Fe(NH2-phen)32+聚合膜修飾電極的電化學行為研究 ····· 116 第六章 結論 ························ 136 第七章 參考文獻 ······················ 137 附錄 ……………………………………………………………………… 140

    參考文獻
    1. Gray, H. B.; Simon, J. D.; Trogler, W. C. Ed. "Braving the
    Elements", 1995, pp. 300~314, University SCIENCE Books:
    Sausalito.
    2. Ronald, D. T.; Sosnovsky, G. Chem. Rev. 1997, 97, 83.
    3. Teng, Y. W.; Chang, I. J.; Wang, C. M. J. Phys. Chem. B
    1997, 101, 10386.
    4. Wilson, M. J. "Clay mineralogy:spectroscopic and chemical
    determinative methodes", 1994, pp. 43~57, London:Chapman &
    Hall.
    5. Yoon, K. B. Chem. Rev. 1993, 93, 321.
    6. Pfeiffer, P.; Tsumaki, T. Justus Liebigs Ann. Chem. 1933,
    503, 84.
    7. Mohamed, M. A. J. Coord. Chem. 1998, 43, 89.
    8. Hobday, M. D.; Smith, T. D. J. Coord. Chem. Rev. 1972, 9,
    311.
    9. Lewis, J.; Mabbs, F. E., Richards A. J. Chem. Soc. A 1967,
    1014.
    10. Gerloch, M.; Lewis, J.; Mabbs, F. E.; Richards A. J. Chem.
    Soc. A 1968, 112.
    11. Gerloch, M.; Mckenzie, E. D. Towl, A. D. C. J. Chem. Soc.
    A 1969, 2850.
    12. Kessel, S. L.; Hendrickson, D. N. Inorg. Chem. 1978, 17,
    2630.
    13. Kessel, S. L.; Emberson, R. M.; Debrunner, P. G.;
    Hendrickson, D. N. Inorg. Chem. 1980, 19, 1170.
    14. Nakamura, M.; Itoh, T.; Okawa, H.; Kida, S. J. Inorg. Nucl.
    Chem. 1981, 43, 2281.
    15. Lloret, F.; Mollar, M.; Faus,J.; Julve, M.; Castro, I.
    Inorg. Chimica Acta 1991, 189, 195.
    16. Lloret, F.; Moratal, J.; Faus,J. J. Chem. Soc. Dalton
    Trans. 1983, 1743.
    17. Gaillon, L.; Sajot, N.; Bedioui, F.; Devynck, J.
    J. Electroanal. Chem. 1993, 345, 157.
    18. Villiers, A.; Acad, C. R. Science 1891, 112, 536.
    19. Schardinger, F. Wien. Klin. Wochenschr. 1904, 17, 207.
    20. Freudenberg, K.; Plankenhorn, E.; Knauber, H. Chem. Ind.
    1947, 731.
    21. March, J. "Advanced organic chemistry:reactions,
    mechanisms, and structure", 1985, 3rd ed. p. 90, New York:
    Wiley.
    22. Saenger, W. Angew. Chem. Int. Ed. Engl. 1980, 19, 344.
    23. Freudenberg, K.; Cramer, F. Naturforsch. B 1948, 3, 464.
    24. Cramer, F. Chem. Ber. 1953, 86, 1576.
    25. Cramer, F.; Dietsche, W. Chem. Ber. 1959, 92, 378.
    26. Chen, S. M. J. Electroanal. Chem. 1996, 401, 147.
    27. Barker, G. C.; Jenkins, I. L. Analyst 1952, 77, 685.
    28. Brett, M. A.; Brett, A. M. O. Electrochemistry principles,
    methods, and applications, Oxford science publications,
    1993, 219.
    29. Deakin, M. R.; Buttry, D. A. Anal. Chem. 1989, 61, 1147A.
    30. Shyu, S. C.; Wang, C. M. J. Electroanal. Chem. 1997, 440,
    27.
    31. Shyu, S. C.; Wang, C. M. J. Electrochem. Soc. 1997, 144,
    3419.
    32. Lloret, F.; Moratal, J.; Faus, J. J. Chem. Soc. Dalton
    Trans. 1983, 1749.
    33. Kao, J. Y.; Wang, C. M. Journal of Chinese Chemical Society
    1994, 41, 533.
    34. Christopher, E. D.; Murray, R. W. Science 1986, 231, 25
    35. Elles, C. D.; Margerum, R. W.; Murray, R. W.; Meyer, T. J.
    Inorg. Chem. 1983, 22, 1283
    36. Pickup, P. G.; Osteryoung, R. A. Inorg. Chem. 1985, 24,
    2707
    37. James, B. R.; Williams, R. J. P. J. Chem. Soc. 1961, 2007
    38. Mirzoian, A.; Kaifer, A. E. J. Eur. Chem. 1997, 3, 1052.
    39. Palmore G. T. R.; Smith, D. K.; Wrighton, M. S. J. Phys.
    Chem. B 1997, 101, 2437.
    40. Breslow, R. Science 1982, 218, 532.

    無法下載圖示
    QR CODE