研究生: |
劉亞汶 Yea-Wenn Liou |
---|---|
論文名稱: |
含鐵化合物之光電化學性質研究 |
指導教授: |
王忠茂
Wang, Chong-Mou |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
畢業學年度: | 87 |
語文別: | 中文 |
論文頁數: | 141 |
中文關鍵詞: | 鐵 、光電化學 |
英文關鍵詞: | iron, photoelectrochemistry |
論文種類: | 學術論文 |
相關次數: | 點閱:161 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘 要
本實驗將具有電化學活性之iron(Ⅱ) tris(1,10-phenanthroline)(簡寫為Fe(phen)32+)及敏光物質9-methylacridinium (簡寫為AcH+)交換至沸石(Zeolite Y,NaY)的孔洞中,並將其鋪設於二氧化錫(ITO)電極上,其外再以Polystyrene(簡寫為PS)包覆,即完成無銀感光薄膜之製備。此修飾電極(簡寫為ITO/NaY/AcH+/Fe(phen)32+/PS)在pH 4的溶液中、電壓為+0.3 V vs. SCE及照光時可催化N,N-diethyl-2-methyl-1,4-phenylenediamine(簡寫為DEPD)之氧化,並與α-naphthol發生偶合反應,而於電極表面上形成藍色的產物-Indophenol blue。
本實驗也製備Ferric N,N'-bis(salicylidene)ethylenediamine chloride(簡寫為Fe(Salen)Cl),並以循環伏安法分析其電化學性質,實驗顯示此化合物可穩定存在,其生成常數為7.1×1025 M-1;在非水溶液中,Fe(Salen)+可催化氧氣之還原,吾人便依此特性設計一氧氣偵測電極(簡稱ITO/Fe(Salen)+修飾電極),於pH 7水溶液中偵測氧氣,其靈敏度為70.7 μA/mM O2。此外,ITO/Fe(Salen)+修飾電極亦可催化過氧化氫之還原,其催化反應符合EC' mechanism及薄層電池(Thin-layer cell)模式,由實驗結果顯示:Fe(Salen)+催化過氧化氫還原的反應速率常數約為4400 M-1s-1,若將葡萄糖氧化酵素(Glucose Oxidase,簡稱GOx)固定於ITO/Fe(Salen)+修飾電極表面,此電極可於飽和氧氣溶液中,偵測葡萄糖之濃度,因此可作為葡萄糖偵測電極之用。實驗結果也顯示:ITO/Fe(Salen)+/Gox修飾電極對葡萄糖的偵測線性範圍為10-2~10-4 M,偵測極限約為10-4 M。此外,Fe(Salen)+的電子轉移與溶液的pH值有關,因此可用以分析水溶液中的氫離子濃度,其線性範圍為2<pH<10,靈敏度為-41 mV/pH。
本實驗也對Iron(Ⅱ) tris(5-amino-1,10-phenanthroline)(簡寫為Fe(NH2-phen)32+)之電化學性質加以研究,實驗結果顯示:此化合物可以電化學氧化方式聚合於碳電極表面上(簡稱glassy carbon/Fe(NH2-phen)32+修飾電極)。此電極對水溶液中的氫離子濃度極為敏感,其還原電位隨溶液pH值增加而向負電位偏移,靈敏度為-39.8 mV/pH,有效線性範圍為1<pH<10。由於Fe(NH2-phen)32+的形式電位(formal potential)可隨溶液的pH值變化而偏移,因此可藉以控制電極與溶液間的電子傳遞行為。此外,實驗也發現Methyl viologen(簡寫為MV2+)可特別吸附於Fe(NH2-phen)32+薄膜上,根據電化學石英震盪天平(Electrochemical quartz crystal microbalance,簡寫為EQCM)之研究,MV2+可能先吸附於膜層表面繼而進入膜層之內,因而造成電極表面質量下降繼而增加。
Abstract
In this thesis, iron-containing particles or species, such as iron-containing clays (denoted clay), iron-containing zeolites (denoted NaY/Fe2+), ferric
N,N'-bis(salicylidene)ethylenediamine chloride (denoted Fe(Salen)Cl), and iron tris(5-NH2-1,10-phenanthroline) (denoted Fe(NH2-phen)2+) have been investigated for their potential in phototoelectrochemical applications.
Experimental results showed that indophenol blue can be formed on the surface of the modified electrodes made with iron-containing clay or zeolite Y particles and
9-methylacridinium (AcH+) in the solution containing
α-naphthol and N,N-diethyl-1,4-phenylenediamine (DEPD) during photo illumination. A non-silver based photographic film was thus developed.
Fe(Salen)+ species has been immobilized on ITO glass for analyzing the contents of oxygen and hydrogen peroxide in aqueous solutions. Fe(Salen)+ showed a remarkable effect in mediating the reduction of oxygen and H2O2 at ambient conditions. For oxygen, the detection limit at pH 7 is nearly 0.4 mM; a linear calibration ranging from 0.4 to 5 mM was obtained. For H2O2, Fe(Salen)+ showed an EC' catalytical mechanism for the reduction of H2O2; the pseudo-first order reaction rate constant at pH 7 was estimated to be 4400 M-1s-1.
Based on this result, a glucose biosensor was derived. After being incoporated with glucose oxidase (GOx), the Fe(Salen)+ modified electrode displayed a remarkable sensitivity to glucose; the detection limit was about 0.1 mM at pH 7; the linear calibration curve covers a range of 0.1 - 15 mM. Besides, we also found that the formal potential of Fe(Salen)+ is very sensitive to the solution pH; a linear calibration curve covering 2 <pH<10 was thus obtained.
Experimental results also showed that Fe(NH2-phen)2+ could be polymerized on the surface of glassy carbon, ITO glass and Au electrodes, and that the formal potential of the polymerized Fe(NH2-phen)2+ is very sensitive to the solution pH. Because of these effects, the Fe(NH2-phen)2+ modified electrode can be used to gate the electron transfer reaction taking place between the solution and the electrode. Although the redox reaction of methyl viologen (MV2+) should be blocked by the energetics of Fe(NH2-phen)2+, EQCM experiments suggested that MV2+ might be specifically adsorbed on the Fe(NH2-phen)2+ film through two stages, i.e., firstly, on the surface, and then into the Fe(NH2-phen)2+ film.
參考文獻
1. Gray, H. B.; Simon, J. D.; Trogler, W. C. Ed. "Braving the
Elements", 1995, pp. 300~314, University SCIENCE Books:
Sausalito.
2. Ronald, D. T.; Sosnovsky, G. Chem. Rev. 1997, 97, 83.
3. Teng, Y. W.; Chang, I. J.; Wang, C. M. J. Phys. Chem. B
1997, 101, 10386.
4. Wilson, M. J. "Clay mineralogy:spectroscopic and chemical
determinative methodes", 1994, pp. 43~57, London:Chapman &
Hall.
5. Yoon, K. B. Chem. Rev. 1993, 93, 321.
6. Pfeiffer, P.; Tsumaki, T. Justus Liebigs Ann. Chem. 1933,
503, 84.
7. Mohamed, M. A. J. Coord. Chem. 1998, 43, 89.
8. Hobday, M. D.; Smith, T. D. J. Coord. Chem. Rev. 1972, 9,
311.
9. Lewis, J.; Mabbs, F. E., Richards A. J. Chem. Soc. A 1967,
1014.
10. Gerloch, M.; Lewis, J.; Mabbs, F. E.; Richards A. J. Chem.
Soc. A 1968, 112.
11. Gerloch, M.; Mckenzie, E. D. Towl, A. D. C. J. Chem. Soc.
A 1969, 2850.
12. Kessel, S. L.; Hendrickson, D. N. Inorg. Chem. 1978, 17,
2630.
13. Kessel, S. L.; Emberson, R. M.; Debrunner, P. G.;
Hendrickson, D. N. Inorg. Chem. 1980, 19, 1170.
14. Nakamura, M.; Itoh, T.; Okawa, H.; Kida, S. J. Inorg. Nucl.
Chem. 1981, 43, 2281.
15. Lloret, F.; Mollar, M.; Faus,J.; Julve, M.; Castro, I.
Inorg. Chimica Acta 1991, 189, 195.
16. Lloret, F.; Moratal, J.; Faus,J. J. Chem. Soc. Dalton
Trans. 1983, 1743.
17. Gaillon, L.; Sajot, N.; Bedioui, F.; Devynck, J.
J. Electroanal. Chem. 1993, 345, 157.
18. Villiers, A.; Acad, C. R. Science 1891, 112, 536.
19. Schardinger, F. Wien. Klin. Wochenschr. 1904, 17, 207.
20. Freudenberg, K.; Plankenhorn, E.; Knauber, H. Chem. Ind.
1947, 731.
21. March, J. "Advanced organic chemistry:reactions,
mechanisms, and structure", 1985, 3rd ed. p. 90, New York:
Wiley.
22. Saenger, W. Angew. Chem. Int. Ed. Engl. 1980, 19, 344.
23. Freudenberg, K.; Cramer, F. Naturforsch. B 1948, 3, 464.
24. Cramer, F. Chem. Ber. 1953, 86, 1576.
25. Cramer, F.; Dietsche, W. Chem. Ber. 1959, 92, 378.
26. Chen, S. M. J. Electroanal. Chem. 1996, 401, 147.
27. Barker, G. C.; Jenkins, I. L. Analyst 1952, 77, 685.
28. Brett, M. A.; Brett, A. M. O. Electrochemistry principles,
methods, and applications, Oxford science publications,
1993, 219.
29. Deakin, M. R.; Buttry, D. A. Anal. Chem. 1989, 61, 1147A.
30. Shyu, S. C.; Wang, C. M. J. Electroanal. Chem. 1997, 440,
27.
31. Shyu, S. C.; Wang, C. M. J. Electrochem. Soc. 1997, 144,
3419.
32. Lloret, F.; Moratal, J.; Faus, J. J. Chem. Soc. Dalton
Trans. 1983, 1749.
33. Kao, J. Y.; Wang, C. M. Journal of Chinese Chemical Society
1994, 41, 533.
34. Christopher, E. D.; Murray, R. W. Science 1986, 231, 25
35. Elles, C. D.; Margerum, R. W.; Murray, R. W.; Meyer, T. J.
Inorg. Chem. 1983, 22, 1283
36. Pickup, P. G.; Osteryoung, R. A. Inorg. Chem. 1985, 24,
2707
37. James, B. R.; Williams, R. J. P. J. Chem. Soc. 1961, 2007
38. Mirzoian, A.; Kaifer, A. E. J. Eur. Chem. 1997, 3, 1052.
39. Palmore G. T. R.; Smith, D. K.; Wrighton, M. S. J. Phys.
Chem. B 1997, 101, 2437.
40. Breslow, R. Science 1982, 218, 532.