簡易檢索 / 詳目顯示

研究生: 鄭敬錡
Cheng, Ching-Chi
論文名稱: 基於ROS開發工業應用之無人搬運車安全及強健移動式機器人導航策略
Safe and Robust Mobile Robot Navigation Strategies for an Automated Guided Vehicle Based on ROS in Industrial Applications
指導教授: 蔣欣翰
Chiang, Hsin-Han
王偉彥
Wang, Wei-Yen
學位類別: 碩士
Master
系所名稱: 電機工程學系
Department of Electrical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 92
中文關鍵詞: 自動搬運機器人機器人作業系統同步定位與地圖建置安全導航動態窗口避障彈性自動化
英文關鍵詞: Automated guided vehicle (AGV), ROS, SLAM, safe navigation, dynamic window approach (DWA), flexible automation
DOI URL: http://doi.org/10.6345/NTNU202001147
論文種類: 學術論文
相關次數: 點閱:218下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要 i ABSTRACT ii 目錄 iv 表目錄 vii 圖目錄 viii 第一章 續論 1 1.1 研究背景 1 1.2 文獻回顧 2 1.2.1 無人搬運車 2 1.2.2 導航演算法 3 1.2.3 障礙物閃避 5 1.3 論文架構 8 第二章 無人搬運車架構及設備 10 2.1 無人搬運車機構 10 2.2 運算核心 11 2.3 電力系統 11 2.3.1 電池規格 11 2.3.2 充電設備 12 2.4 馬達系統 13 2.4.1 馬達規格 13 2.4.2 控制架構 13 2.5 感測器系統 14 2.5.1 雷射測距儀 14 2.5.2 攝影機 15 2.6 搬運設備 15 2.6.1 升降平台 15 2.6.2 貨料架 16 第三章 軟體架構設計 17 3.1 ROS機器人作業系統 17 3.1.1 ROS的基本概念 17 3.1.2 ROS使用版本 19 3.2 無人搬運車系統架構 20 3.2.1 模組架構設計 20 3.2.2 ROS節點架構 21 3.2.3 硬體驅動設置 23 第四章 導航功能設計 25 4.1 Gmapping建圖 25 4.2 路徑規劃 25 4.2.1 直線補點 25 4.2.2 A*搜尋法 26 4.3 AMCL定位 28 4.4 路徑追蹤 28 4.5 動態窗口避障 31 4.5.1 偵測障礙物 31 4.5.2 軌跡模擬 32 4.5.3 動態窗口 33 4.5.4 代價函數 34 4.6 近端定位 36 4.6.1 自動充電 36 4.6.2 搬運貨料架 39 4.7 使用者介面 41 第五章 實驗結果 45 5.1 實驗環境 45 5.2 安裝及操作流程 46 5.3 Gmapping建圖 51 5.4 路徑規劃 53 5.5 AMCL定位 55 5.6 路徑追蹤 57 5.7 動態窗口避障 64 5.8 近端定位 79 5.9 工廠場域實際測試 86 第六章 結論與未來展望 89 6.1 結論 89 6.2 未來展望 89 參考文獻 90

    [1] Amazon無人搬運車, 取自https://www.youtube.com/watch?v=uFoGDUHXZjs
    [2] ZACO A9s 掃地機器人, 取自https://www.xiaomist.com/2020/01/zaco-a9s-is-cleaning-robot-that-finally.html
    [3] RIBA 醫療照護機器人, 取自http://rtc.nagoya.riken.jp/RIBA/index-e.html
    [4] Pioneer P3-D輪型機器人, 取自https://www.generationrobots.com/en/402395-robot-mobile-pioneer-3-dx.html
    [5] Darwin-OP兩足機器人, 取自 http://support.robotis.com/en/product/darwin-op.htm
    [6] 劉慶偉,“基於機器人作業系統之自主履帶車跨樓層巡邏系統開發”,國立臺灣師範大學電機工程學系碩士論文,108年7月
    [7] 機器人作業系統 ROS, 取自https://www.ros.org/
    [8] Jha Abhishek, and Manoj Kumar., “Two Wheels Differential Type Odometry for Mobile Robots,” in Proc. 3rd International Conference on Reliability, Infocom Technologies and Optimization., January 2015.
    [9] OMRON LD系列機器人, 取自http://www.omron-ap.com/new/information/2017/01/001.html
    [10] SOLOMON 無軌自動搬運車, 取自https://www.solomon.com.tw/product/%E7%84%A1%E8%BB%8C%E8%87%AA%E8%B5%B0%E8%BB%8A-mir100/
    [11] AGV magnetic tape and its advantages, 取自https://www.imamagnets.com/en/blog/agv-magnetic-tape-and-its-advantages/
    [12] 【深入臺灣AGV倉儲現場】AGV裝置大剖析, 取自https://www.ithome.com.tw/news/133878
    [13] Stephen Se, David Lowe, and Jim Little., “Mobile Robot Localization and Mapping with Uncertainty using Scale-Invariant Visual Landmarks,” The International Journal of Robotics Research, Vol. 21, No. 8, pp. 735-758, August, 2002.
    [14] S. Kohlbrecher, O. von Stryk, J. Meyer and U. Klingauf., “A flexible and scalable SLAM system with full 3D motion estimation,” in Proc. 2011 IEEE International Symposium on Safety, Security, and Rescue Robotics, pp. 155-160, 2011.
    [15] G. Grisetti, C. Stachniss and W. Burgard., “Improved Techniques for Grid Mapping with Rao-Blackwellized Particle Filters,” IEEE Transactions on Robotics, vol. 23, no. 1, pp. 34-46, Feb. 2007.
    [16] H. Cheng, H. Chen and Y. Liu., “Topological Indoor Localization & Navigation for Autonomous Industrial Mobile Manipulator,” in Proc. 2012 11th International Conference on Machine Learning and Applications, pp. 238-243, 2012.
    [17] C.-Q. Wang, J.-K. Wang , C.-A. Li , D. Ho , J. Cheng ,T.-F. Yan , L.-L. Meng and Max Q.-H. Meng., “Safe and Robust Mobile Robot Navigation in Uneven Indoor Environments,” Sensors, vol. 19, no. 13: 2993, 2019.
    [18] A. Imhof, M. Oetiker and B. Jensen., “Wall following for autonomous robot navigation,” 2012 2nd International Conference on Applied Robotics for the Power Industry (CARPI), pp. 1-4, 2012.
    [19] Hassani, Imen & Maalej, Imen and Rekik, Chokri., “Robot Path Planning with Avoiding Obstacles in Known Environment Using Free Segments and Turning Points Algorithm,” Mathematical Problems in Engineering, 2018.
    [20] M. Al-darwbi and U. Baroudi., “FreeD*: a mechanism for finding a short and collision free path,” IET Cyber-systems and Robotics, vol. 1, no. 2, pp. 55-62, 2019.
    [21] A. Alajlan, K. Elleithy, M. Almasri, T. Sobh., “An Optimal and Energy Efficient Multi-Sensor Collision-Free Path Planning Algorithm for a Mobile Robot in Dynamic Environments,” Robotics, vol. 6, no. 7, 2017.
    [22] D. Fox, W. Burgard and S. Thrun., “The dynamic window approach to collision avoidance,” IEEE Robotics & Automation Magazine, vol. 4, no. 1, pp. 23-33, March 1997.
    [23] ROS/Concept – ROS Wiki, 取自http://wiki.ros.org/ROS/Concepts
    [24] Master – ROS Wiki, 取自http://wiki.ros.org/Master
    [25] ROS kinetic, 取自http://wiki.ros.org/kinetic
    [26] ROS 版本差異, 取自https://www.ros.org/reps/rep-0003.html
    [27] Qt - 維基百科, 取自https://zh.wikipedia.org/wiki/Qt
    [28] A* Pathfinding, 取自https://www.youtube.com/watch?v=-L-WgKMFuhE
    [29] S. Thrun, W. Burgard, and D. Fox., Probabilistic Robotics. 1999-2000.
    [30] E. Olson., “AprilTag: A robust and flexible visual fiducial system,” in Proc. 2011 IEEE International Conference on Robotics and Automation, pp. 3400-3407, 2011
    [31] Clonezilla 再生龍, 取自https://clonezilla.nchc.org.tw/intro/

    無法下載圖示 電子全文延後公開
    2025/07/31
    QR CODE