簡易檢索 / 詳目顯示

研究生: 黃步偉
Huang, Bu-Wei
論文名稱: 以掃描穿隧顯微術研究複合有機異質結構之表面形貌與電子組態
Research of Surface Morphology and Electronic Configuration of Hybrid Organic Heterostructure by Scanning Tunneling Microscopy
指導教授: 傅祖怡
Fu, Tsu-Yi
口試委員: 林俊良
Lin, Chun-Liang
林文欽
Lin, Wen-Chin
傅祖怡
Fu, Tsu-Yi
口試日期: 2024/06/24
學位類別: 碩士
Master
系所名稱: 物理學系
Department of Physics
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 157
中文關鍵詞: 半導體紅螢烯有機異質結構掃描穿隧顯微術掃描穿隧能譜術
英文關鍵詞: Rubrene, Semiconductor, Organic Heterostructure, Scanning tunneling microscopy (STM), Scanning tunneling spectroscopy (STS)
研究方法: 實驗設計法
DOI URL: http://doi.org/10.6345/NTNU202400778
論文種類: 學術論文
相關次數: 點閱:99下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著新穎科技與半導體產業的發展迅速,有機半導體材料近年因多元材料特性而受到廣泛關注。紅螢烯(Rubrene)在過去已有許多相關的物理、化學和材料科學等研究;除了以高載子遷移率著稱,用其製作之有機電子元件皆有相當出色的表現,顯現紅螢烯作為有機半導體的潛力。然而,紅螢烯沉積於表面的原子尺度形貌、能譜以及相關研究仍屬缺乏。
    本研究主要透過自組式熱蒸鍍槍沉積紅螢烯於矽(111)、HOPG基板上形成有機異質結構,再透過掃描穿隧顯微術(STM)和掃描穿隧能譜術(STS)進行量測。紅螢烯分子以Stranski–Krastanov模式首先形成小型島狀結構;再形成填滿表面區域的單、雙分子層高平台;最終形成交互堆疊的島狀結構,顯現出紅螢烯沉積時的複雜性。在鎳金屬沉積於紅螢烯有機異質結構表面後,我們觀察到表面形貌的清晰度顯著提升;若進行表面形貌分析則可觀察到符合紅螢烯分子尺寸的單塔亮點結構,也觀察到與紅螢烯側方苯取代基匹配的雙塔亮點結構,推測紅螢烯分子將以駢四苯骨幹平行於表面的方式吸附,或以不同的分子方向進行沉積。本研究STS量測發現鎳金屬沉積後的有機異質結構能譜更為明顯,能隙(E_g)與紅螢烯單晶的理論能隙相符,但是大於先前文獻以光學方法測得之能隙數據,且傳導帶(E_c)與價電帶(E_v)位置也不同,凸顯出紅螢烯分子能帶結構之複雜特性。
    總而言之,本研究對於紅螢烯有機異質結構進行一系列量測實驗,並發現與先前文獻有所異同的結果;同時,本研究再次驗證金屬蒸鍍於表面將有助於提升掃描穿隧顯微術與能譜術之解晰度。相信值得以此作為出發點更進一步延伸探討,也將開啟相關研究新的範疇與視野。

    With the rapid development of new technologies, organic semiconductors have gained widespread attention in recent years due to their special characteristics. Rubrene has been studied in domains of physics, chemistry, and materials science studies due to its high carrier mobility, and exhibits excellent performance while fabricated to electronic devices, which demonstrates its potential as an organic semiconductor material. However, there is still a lack of research on the atomic-resolution morphology and energy spectrum of rubrene heterostructures.
    In this study, we deposit rubrene onto silicon (111) and highly ordered pyrolytic graphite (HOPG) substrates to fabricate organic heterostructures through a self-assembled thermal evaporator, scanning tunneling microscopy (STM) and scanning tunneling spectroscopy (STS) are conducted to measure the surface. Firstly, we observed rubrene structures form through the Stranski–Krastanov mode on HOPG, followed by the small islands, molecular-high platforms, and finally stacked as interspersed island structures. After nickel (Ni) is deposited onto the surface of the rubrene heterostructures, significant enhancement in surface morphology is observed. Single-tower bright spot structures match the size of rubrene molecules, as well as double-tower bright spot structures corresponding to the distances of benzene substituent, suggesting that rubrene molecules adsorb in various molecular orientations. Finally, STS measurements also become more distinct after Ni deposition, revealing the energy spectrum of the organic heterostructures. The energy bandgap (E_g) is similar to the theoretical bandgap of rubrene single crystal but larger than the bandgap measured by optical methods in previous research. Different conduction bands (E_c) and valence bands (E_v) are observed, which presents the energy band structure of rubrene molecules.
    In conclusion, this study conducts a series of measurements on rubrene organic heterostructures, with numerous results that are both like and different from previous research. Additionally, this study reaffirms that metal deposition on the surface will enhance the resolution of scanning tunneling microscopy and spectroscopy. This is a starting point for further exploration, opening new perspectives for related research.

    第一章 緒論 1 1.1 現代半導體科技的發展、應用與趨勢 1 1.2 有機半導體材料與紅螢烯 2 1.3 研究動機與相關文獻探討 4 1.3.1紅螢烯分子沉積於金屬表面上之研究 4 1.3.2紅螢烯分子沉積於非金屬表面上之研究 15 1.3.3紅螢烯分子沉積於高定向熱解石墨表面上之研究 23 第二章 實驗原理 31 2.1 掃描穿隧顯微術與掃描穿隧能譜術 31 2.2 半導體能帶結構與針尖引發能帶彎曲 38 2.3 物理氣相沉積與電子束蒸鍍 42 2.4 有機分子的鍵結以及表面特性 44 2.5 光激螢光能譜術與拉曼能譜能譜術 46 第三章 實驗儀器 48 3.1 超高真空腔體配置與相關儀器之使用、保養與維護 48 3.1.1 超高真空腔體之空間配置 48 3.1.2 各式真空幫浦 50 3.1.3 氣體壓力真空計 56 3.1.4 殘氣分析儀 59 3.1.5 其他相關配套儀器 60 3.2 自組式熱蒸鍍槍 64 3.3 電子束蒸鍍槍 66 3.4 掃描穿隧顯微鏡與掃描穿隧能譜儀 68 第四章 實驗方法與步驟 70 4.1 前置準備工作 70 4.1.1 超高真空實驗環境建置方法與步驟 70 4.1.2 掃描穿隧顯微鏡探針製備 74 4.1.3 安裝自組式熱蒸鍍槍 77 4.1.4準備掃描穿隧顯微樣品之相關工作 79 4.2 樣品傳輸進入超高真空系統之方法 80 4.3 以自組式熱蒸鍍槍製備紅螢烯有機分子層 81 4.4 以電子束蒸鍍槍蒸鍍鎳金屬 82 4.5 掃描穿隧顯微鏡與掃描穿隧能譜之量測 83 4.6 掃描穿隧顯微術與掃描穿隧能譜之量測結果分析方法 85 第五章 實驗結果與討論 86 5.1 宏觀樣品形貌之分析與比較 86 5.2 矽基板之表面形貌與基本性質 92 5.3 紅螢烯蒸鍍於矽基板上之表面形貌與基本性質 96 5.4 高定向熱解石墨之表面形貌與基本性質 104 5.5 紅螢烯蒸鍍於高定向熱解石墨上之表面形貌與基本性質 110 5.6 鎳金屬蒸鍍於有機異質結構上之表面形貌與基本性質 118 5.7 各樣品形貌與掃描穿隧能譜量測結果之綜合比較 131 5.8 光激螢光能譜與拉曼能譜量測結果 137 第六章 結論 140 參考文獻 141 第一章 緒論 141 第二章 實驗原理 148 第三章 實驗儀器 152 第四章 實驗方法與步驟 153 第五章 實驗結果與討論 154

    第一章 緒論
    [1] Barbier, E. B., & Burgess, J. C. (2020). Sustainability and development after COVID-19. World development, 135, 105082.
    [2] Lund, S., Madgavkar, A., Manyika, J., Smit, S., Ellingrud, K., Meaney, M., & Robinson, O. (2021). The future of work after COVID-19. McKinsey global institute, 18.
    [3] Salahdine, F., Han, T., & Zhang, N. (2023). 5G, 6G, and Beyond: Recent advances and future challenges. Annals of Telecommunications, 78(9), 525-549.
    [4] OpenAI. (2023). ChatGPT (Mar 14 version) [Large language model].
    [5] Matin, A., Islam, M. R., Wang, X., Huo, H., & Xu, G. (2023). AIoT for sustainable manufacturing: Overview, challenges, and opportunities. Internet of Things, 100901.
    [6] Al-Ansi, A. M., Jaboob, M., Garad, A., & Al-Ansi, A. (2023). Analyzing augmented reality (AR) and virtual reality (VR) recent development in education. Social Sciences & Humanities Open, 8(1), 100532.
    [7] Cai, W., Wu, X., Zhou, M., Liang, Y., & Wang, Y. (2021). Review and development of electric motor systems and electric powertrains for new energy vehicles. Automotive Innovation, 4, 3-22.
    [8] Li, Y., & Kimura, S. (2021). Economic competitiveness and environmental implications of hydrogen energy and fuel cell electric vehicles in ASEAN countries: The current and future scenarios. Energy Policy, 148, 111980.
    [9] Alexeev, Y., Bacon, D., Brown, K. R. et al. (2021). Quantum computer systems for scientific discovery. PRX quantum, 2(1), 017001.
    [10] De Leon, N. P., Itoh, K. M., Kim, D. et al. (2021). Materials challenges and opportunities for quantum computing hardware. Science, 372(6539), eabb2823.
    [11] Bauer, H., Burkacky, O., Kenevan, P., Mahindroo, A., & Patel, M. (2020). How the semiconductor industry can emerge stronger after the COVID-19 crisis. McKinsey & Company, 1-8.
    [12] Kamal, K. Y. (2022). The Silicon Age: Trends in Semiconductor Devices Industry. Journal of Engineering Science & Technology Review, 15(1).
    [13] Ren, Y., Yang, Y., Wang, Y., & Liu, Y. (2023). Dynamics of the global semiconductor trade and its dependencies. Journal of Geographical Sciences, 33(6), 1141-1160.
    [14] Mohammad, W., Elomri, A., & Kerbache, L. (2022). The global semiconductor chip shortage: Causes, implications, and potential remedies. IFAC-Papers On Line, 55(10), 476-483.
    [15] Miller, C. (2022). Chip war: the fight for the world's most critical technology. Simon and Schuster.
    [16] Yuan, B. J., Chang, C. Y., & Lo, M. C. (1998, October). Strategies of semiconductor industry in Taiwan. In IEMC'98 Proceedings. International Conference on Engineering and Technology Management. Pioneering New Technologies: Management Issues and Challenges in the Third Millennium (Cat. No. 98CH36266) (pp. 541-545). IEEE.
    [17] Quirk, M., & Serda, J. (2001). Semiconductor manufacturing technology (Vol. 1). Upper Saddle River, NJ: Prentice Hall.
    [18] Nishi, Y., & Doering, R. (Eds.). (2000). Handbook of semiconductor manufacturing technology. CRC press.
    [19] Sze, S. M., Li, Y., & Ng, K. K. (2021). Physics of semiconductor devices. John wiley & sons.
    [20] Somorjai, G. A. (1996). Modern surface science and surface technologies: an introduction. Chemical reviews, 96(4), 1223-1236.
    [21] Woodruff, D. P. (2016). Modern techniques of surface science. Cambridge university press.
    [22] Moore, G. E. (1998). Cramming more components onto integrated circuits. Proceedings of the IEEE, 86(1), 82-85.
    [23] Shalf, J. (2020). The future of computing beyond Moore’s Law. Philosophical Transactions of the Royal Society A, 378(2166), 20190061.
    [24] Leiserson, C. E., Thompson, N. C., Emer, J. S., Kuszmaul, B. C., Lampson, B. W., Sanchez, D., & Schardl, T. B. (2020). There’s plenty of room at the Top: What will drive computer performance after Moore’s law?. Science, 368(6495), eaam9744.
    [25] Terna, A. D., Elemike, E. E., Mbonu, J. I., Osafile, O. E., & Ezeani, R. O. (2021). The future of semiconductors nanoparticles: Synthesis, properties and applications. Materials Science and Engineering: B, 272, 115363.
    [26] Chepesiuk R. (1999). Where the chips fall: environmental health in the semiconductor industry. Environmental health perspectives, 107(9), A452–A457. https://doi.org/10.1289/ehp.99107a452
    [27] White, S. J. O., & Shine, J. P. (2016). Exposure potential and health impacts of indium and gallium, metals critical to emerging electronics and energy technologies. Current environmental health reports, 3(4), 459-467.
    [28] Ishii, H., Kudo, K., Nakayama, T., & Ueno, N. (2015). Electronic processes in organic electronics. Springer Series in Materials Science.
    [29] Köhler, A., & Bässler, H. (2015). Electronic processes in organic semiconductors: An introduction. John Wiley & Sons.
    [30] Neupane, G. P., Ma, W., Yildirim, T., Tang, Y., Zhang, L., & Lu, Y. (2019). 2D organic semiconductors, the future of green nanotechnology. Nano materials science, 1(4), 246-259.
    [31] Linköping University. (2024, January 22). New sustainable method for creating organic semiconductors. Science Daily. Retrieved March 22, 2024 from www.sciencedaily.com/releases/2024/01/240122182811.htm
    [32] Park, J. S., Chae, H., Chung, H. K., & Lee, S. I. (2011). Thin film encapsulation for flexible AM-OLED: a review. Semiconductor science and technology, 26(3), 034001.
    [33] Zhang, D., Huang, T., & Duan, L. (2020). Emerging self‐emissive technologies for flexible displays. Advanced Materials, 32(15), 1902391.
    [34] Allen, C. F. H., & Gilman, L. (1936). A synthesis of rubrene. Journal of the American Chemical Society, 58(6), 937-940.
    [35] Takeya, J., Yamagishi, M., Tominari, Y. et al. (2007). Very high-mobility organic single-crystal transistors with in-crystal conduction channels. Applied Physics Letters, 90(10).
    [36] Irkhin, P., Ryasnyanskiy, A., Koehler, M., & Biaggio, I. (2012). Absorption and photoluminescence spectroscopy of rubrene single crystals. Physical Review B, 86(8), 085143.
    [37] Nitta, J., Miwa, K., Komiya, N., Annese, E., Fujii, J., Ono, S., & Sakamoto, K. (2019). The actual electronic band structure of a rubrene single crystal. Scientific Reports, 9(1), 9645.
    [38] Chakkamalayath, J., & Kamat, P. V. (2023). Directing Singlet Excited Energy Flow in Rubrene-Perylene Dye (DBP) Films. The Journal of Physical Chemistry C, 127(33), 16312-16318.Machida, S. I., Nakayama, Y., Duhm, S. et al. (2010). Highest-occupied-molecular-orbital band dispersion of rubrene single crystals as observed by angle-resolved ultraviolet photoelectron spectroscopy. Physical review letters, 104(15), 156401.
    [39] Zhang, X., Zhen, Y., Fu, X., et al. (2014). A thienyl peripherally substituted rubrene analogue with constant emissions and good film forming ability. Journal of Materials Chemistry C, 2(39), 8222-8225.
    [40] Zhang, X., Jiang, L., Dong, H., Lu, X., Geng, H., Li, R., & Hu, W. (2018). A new compound between tetracene and rubrene to improve the weakness. Journal of Photochemistry and Photobiology A: Chemistry, 355, 131-135.
    [41] Engmann, S., Barito, A. J., Bittle, E. G., Giebink, N. C., Richter, L. J., & Gundlach, D. J. (2019). Higher order effects in organic LEDs with sub-bandgap turn-on. Nature communications, 10(1), 227.
    [42] Diaz-Andres, A., Tonnelé, C., & Casanova, D. (2024). Electronic Couplings for Triplet–Triplet Annihilation Upconversion in Crystal Rubrene. Journal of Chemical Theory and Computation.
    [43] Lin, K. Y., Wang, Y. J., Chen, K. L. et al. (2016). Rubrene polycrystalline films growth from vacuum deposition at various substrate temperatures. Journal of Crystal Growth, 439, 54-59.
    [44] Lin, K. Y., Wang, Y. J., Chen, K. L. et al. (2017). Role of molecular conformations in rubrene polycrystalline films growth from vacuum deposition at various substrate temperatures. Scientific reports, 7(1), 40824.
    [45] Pandey, A. K. & Nunzi, J. M. (2007) Rubrene/fullerene heterostructures with a half-gap electroluminescence threshold and large photovoltage. Adv. Mater. 19, 3613–3617.
    [46] Pandey, A. K. & Nunzi, J.-M. (2007) Upconversion injection in rubrene/perylene-diimide-heterostructure electroluminescent diodes. Appl. Phys. Lett. 90, 263508.
    [47] He, S. J. & Lu, Z. H. (2016) Ultralow-voltage Auger-electron-stimulated organic light-emitting diodes. J. Photo. Energy 6, 12.
    [48] Pandey, A. K. (2015) Highly efficient spin-conversion effect leading to energy up-converted electroluminescence in singlet fission photovoltaics. Sci Rep. 5, 7787.
    [49] Han, S., Yuan, Y. & Lu, Z.-H. (2006) Highly efficient organic light-emitting diodes with metal/fullerene anode. J. Appl. Phys. 100, 074504.
    [50] Miwa, J. A., Cicoira, F., Bedwani, S., Lipton-Duffin, J., Perepichka, D. F., Rochefort, A., & Rosei, F. (2008). Self-assembly of rubrene on copper surfaces. The Journal of Physical Chemistry C, 112(27), 10214-10221.
    [51] Miwa, J. A., Cicoira, F., Lipton-Duffin, J., Perepichka, D. F., Santato, C., & Rosei, F. (2008). Self-assembly of rubrene on Cu (111). Nanotechnology, 19(42), 424021.
    [52] Schultz, J. F., Li, L., Mahapatra, S., Shaw, C., Zhang, X., & Jiang, N. (2019). Defining multiple configurations of rubrene on a Ag (100) surface with 5 Å spatial resolution via ultrahigh vacuum tip-enhanced Raman spectroscopy. The Journal of Physical Chemistry C, 124(4), 2420-2426.
    [53] Liu, L., Gu, Y. G., Shi, M. X., Tu, Y. B., Sun, K., Wang, J. Z., & Tao, M. L. (2022). Self-assembled and crystalline films of rubrene grown on Cd (0001) surface. Surface Science, 723, 122108.
    [54] Sun, K., Lan, M., & Wang, J. Z. (2015). Absolute configuration and chiral self-assembly of rubrene on Bi (111). Physical Chemistry Chemical Physics, 17(39), 26220-26224.
    [55] Käfer, D., & Witte, G. (2005). Growth of crystalline rubrene films with enhanced stability. Physical Chemistry Chemical Physics, 7(15), 2850-2853.
    [56] Käfer, D., Ruppel, L., Witte, G., & Wöll, C. (2005). Role of molecular conformations in rubrene thin film growth. Physical review letters, 95(16), 166602.
    [57] Pivetta, M., Blüm, M. C., Patthey, F., & Schneider, W. D. (2008). Two‐Dimensional Tiling by Rubrene Molecules Self‐Assembled in Supramolecular Pentagons, Hexagons, and Heptagons on a Au (111) Surface. Angewandte Chemie International Edition, 47(6), 1076-1079.
    [58] Wang, L., Kong, H., Chen, X., Du, X., Chen, F., Liu, X., & Wang, H. (2009). Conformation-induced self-assembly of rubrene on Au (111) surface. Applied Physics Letters, 95(9).
    [59] Pivetta, M., Blüm, M. C., Patthey, F., & Schneider, W. D. (2009). Three-dimensional chirality transfer in rubrene multilayer islands on Au (111). The Journal of Physical Chemistry B, 113(14), 4578-4581.
    [60] Sundar, V. C., Zaumseil, J., Podzorov, V. et al. (2004). Elastomeric transistor stamps: reversible probing of charge transport in organic crystals. Science, 303(5664), 1644-1646.
    [61] Menard, E., Marchenko, A., Podzorov, V., Gershenson, M. E., Fichou, D., & Rogers, J. A. (2006). Nanoscale Surface Morphology and Rectifying Behavior of a Bulk Single‐Crystal Organic Semiconductor. Advanced Materials, 18(12), 1552-1556.
    [62] Park, S. W., Choi, J. M., Lee, K. H., Yeom, H. W., Im, S., & Lee, Y. K. (2010). Amorphous-to-crystalline phase transformation of thin film rubrene. The Journal of Physical Chemistry B, 114(17), 5661-5665.
    [63] Lee, H. M., Moon, H., Kim, H. S., Kim, Y. N., Choi, S. M., Yoo, S., & Cho, S. O. (2011). Abrupt heating-induced high-quality crystalline rubrene thin films for organic thin-film transistors. Organic Electronics, 12(8), 1446-1453.
    [64] Verreet, B., Heremans, P., Stesmans, A., & Rand, B. P. (2013). Microcrystalline organic thin-film solar cells. Advanced materials (Deerfield Beach, Fla.), 25(38), 5504-5507.
    [65] Fusella, M. A., Schreiber, F., Abbasi, K., Kim, J. J., Briseno, A. L., & Rand, B. P. (2017). Homoepitaxy of crystalline rubrene thin films. Nano letters, 17(5), 3040-3046.
    [66] Fusella, M. A., Yang, S., Abbasi, K.et al. (2017). Use of an underlayer for large area crystallization of rubrene thin films. Chemistry of Materials, 29(16), 6666-6673.
    [67] Sinha, S., Wang, C. H., & Mukherjee, M. (2017). Rubrene on differently treated SiO2/Si substrates: A comparative study by atomic force microscopy, X-ray absorption and photoemission spectroscopies techniques. Thin Solid Films, 638, 167-172.
    [68] Wei, Y., Xue, D., Ji, L. et al. (2022). Growth behavior of rubrene thin films on hexagonal boron nitride in the early stage. Chinese Journal of Chemistry, 40(11), 1298-1304.
    [69] Mastrogiovanni, D. D. T., Mayer, J., Wan, A. S.et al. (2014). Oxygen incorporation in rubrene single crystals. Scientific reports, 4(1), 4753.
    [70] Si, G., Liu, F., Su, L., Wu, Z., Zhang, Q., Sun, S., & Zhang, H. (2024). Photogating enhanced photodetectors dominated by rubrene nanodots modified SnS2 films. 2D Materials, 11(2), 025002.
    [71] Wali, S., Su, L., Shafi, M., Wu, Z., Zhang, H., & Ren, J. (2024). High-Sensitivity Flexible Photodetectors Based on Bi2Te3/Rubrene Schottky Heterojunction with Superior Interface. Crystal Growth & Design.
    [72] Hsu, C. J., Nawaz, R., Selvaraj, P., Wang, Y. W., Chou, J. P., & Huang, C. Y. (2024). Spontaneously homogeneous alignment of liquid crystals on self-assembly organic rubrene. Journal of Molecular Liquids, 395, 123856.
    [73] Bossanyi, D. G., Matthiesen, M., Jayaprakash, R., Bhattacharya, S., Zaumseil, J., & Clark, J. (2024). Singlet fission is incoherent in pristine orthorhombic single crystals of rubrene: no evidence of triplet-pair emission. Faraday Discussions.
    [74] Wang, Z., Zhong, Q., Zhang, C., Huang, L., Wang, W., & Chi, L. (2024). Surfactant-like Additives Assisted the Lateral Growth of Pentacene Films. Langmuir.
    [75] Li, W., Bao, X., Wang, C., Yao, Y. et al. (2024). Exploring charge generation and separation in tandem organic light-emitting diodes based on magneto-electroluminescence. Nanotechnology, 35(17), 175203.
    [76] Tanguturi, R. G., Tsai, J. C., Li, Y. S., & Tsay, J. S. (2023). Impact of a rubrene buffer layer on the dynamic magnetic behavior of nickel layers on Si (100). Physical Chemistry Chemical Physics, 25(46), 32029-32039.
    [77] Chang, C. H. T., Chow, Y. T., Jiang, P. C., Yang, T. X., & Tsay, J. S. (2024). Electric field control of magnetic anisotropy and model for oriented Co/graphene design. Applied Physics Letters, 124(9).
    [78] Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D. E., Zhang, Y., Dubonos, S. V., Grigorieva, I. V. & Firsov, A. A. (2004). Electric field effect in atomically thin carbon films. science, 306(5696), 666-669.
    [79] Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Katsnelson, M. I., Grigorieva, I. V., Dubonos, S. V., & Firsov, A. A. (2005). Two-dimensional gas of massless Dirac fermions in graphene. Nature, 438(7065), 197–200.
    [80] Park, J., Ueba, T., Terawaki, R., Yamada, T., Kato, H. S., & Munakata, T. (2012). Image potential state mediated excitation at Rubrene/Graphite interface. The Journal of Physical Chemistry C, 116(9), 5821-5826.
    [81] Ueba, T., Terawaki, R., Morikawa, T. et al. (2013). Diffuse unoccupied molecular orbital of rubrene causing image-potential state mediated excitation. The Journal of Physical Chemistry C, 117(39), 20098-20103.
    [82] Udhardt, C., Forker, R., Gruenewald, M.et al. (2016). Optical observation of different conformational isomers in rubrene ultra-thin molecular films on epitaxial graphene. Thin Solid Films, 598, 271-275.
    [83] Ueba, T., Park, J., Terawaki, R., Watanabe, Y., Yamada, T., & Munakata, T. (2016). Unoccupied electronic structure and molecular orientation of rubrene; from evaporated films to single crystals. Surface Science, 649, 7-13.
    [84] Ueba, T., Yamada, T., & Munakata, T. (2016). Electronic excitation and relaxation dynamics of the LUMO-derived level in rubrene thin films on graphite. The Journal of Chemical Physics, 145(21).
    [85] Yamada, T., & Munakata, T. (2018). Spectroscopic and microscopic investigations of organic ultrathin films: Correlation between geometrical structures and unoccupied electronic states. Progress in Surface Science, 93(4), 108-130.
    [86] Yamada, T., Kinoshita, M., Araragi, K., Watanabe, Y., Ueba, T., Kato, H. S., & Munakata, T. (2018). Direct visualization of diffuse unoccupied molecular orbitals at a rubrene/graphite interface. Physical Chemistry Chemical Physics, 20(25), 17415-17422.
    第二章 實驗原理
    [1] Fowler, R. H., & Nordheim, L. (1928). Electron emission in intense electric fields. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 119(781), 173-181.
    [2] Millikan, R. A., & Lauritsen, C. C. (1928). Relations of field-currents to thermionic-currents. Proceedings of the National Academy of Sciences, 14(1), 45-49.
    [3] Bhattacharya, S. and Ghatak, K.P. (2014) Fowler-Nordheim field emission effects in semiconductor nanostructures. Berlin: Springer Berlin.
    [4] Oppenheimer, J. R. (1928). On the quantum theory of electronic impacts. Physical Review, 32(3), 361.
    [5] Rutherford, E. (1924). XXIV. The capture and loss of electrons by α particles. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 47(278), 277–303.
    [6] Bardeen, J. (1961). Tunnelling from a many-particle point of view. Physical review letters, 6(2), 57.
    [7] Young, R., Ward, J., & Scire, F. (1971). Observation of metal-vacuum-metal tunneling, field emission, and the transition region. Physical Review Letters, 27(14), 922.
    [8] Young, R., Ward, J., & Scire, F. (1972). The topografiner: an instrument for measuring surface microtopography. Review of Scientific Instruments, 43(7), 999-1011.
    [9] Binnig, G., Rohrer, H., Gerber, C., & Weibel, E. (1982). Tunneling through a controllable vacuum gap. Applied Physics Letters, 40(2), 178-180.
    [10] Binnig, G., Rohrer, H., Gerber, C., & Weibel, E. (1982). Vacuum tunneling. Physica B+C, 109, 2075-2077.
    [11] Binnig, G. and Rohrer, H. (1982). Scanning tunneling microscopy. Helvetica Physica Acta 55, 726.
    [12] Binnig, G., Hoenig, H.E. Tunneling investigation of superconducting (SN)x. Z Physik B 32, 23–26 (1978).
    [13] Binnig, G., Rohrer, H., Gerber, C., & Weibel, E. (1982). Surface studies by scanning tunneling microscopy. Physical review letters, 49(1), 57.
    [14] Scheel, H. J., Binning, G., & Rohrer, H. (1982). Atomically flat LPE-grown facets seen by scanning tunneling microscopy. Journal of Crystal Growth, 60(1), 199-202.
    [15] Binnig, G., Rohrer, H., Gerber, C., & Weibel, E. (1983). (111) facets as the origin of reconstructed Au (110) surfaces. Surface Science, 131(1), L379-L384.
    [16] Binnig, G., Rohrer, H., Gerber, C., & Weibel, E. (1983). 7× 7 reconstruction on Si (111) resolved in real space. Physical review letters, 50(2), 120.
    [17] Binnig, G., & Rohrer, H. (1983). Scanning tunneling microscopy. Surface science, 126(1-3), 236-244.
    [18] Binnig, G., H. Rohrer (1984) Scanning tunneling microscopy, 16th General Conference of the European Physical Society, Trends in Physics, European Physical Society, Prague, Vol. 1, 38.
    [19] Binnig, O. K., Rohrer, H., Gerber, C., & Stoll, E. (1984). Real-space observation of the reconstruction of Au(100). Surface Science, 144(2-3), 321–335.
    [20] Baro, A. M., Binnig, G., Rohrer, H., Gerber, Ch., Stoll, E., Baratoff, A., Salvan, F. (1984). Real-space observation of the 2×1 structure of chemisorbed oxygen on Ni (110) by scanning tunneling microscopy. Physical review letters, 52(15), 1304.
    [21] Baró, A. M., Miranda, R., Alamán, J., García, N., Binnig, G., Rohrer, H., Gerber, Ch., & Carrascosa, J. L. (1985). Determination of surface topography of biological specimens at high resolution by scanning tunneling microscopy. Nature, 315(6016), 253–254.
    [22] Binnig, G., Frank, K. H., Fuchs, H., Garcia, N., Reihl, B., Rohrer, H., Salvan, F., Williams, A. R. (1993). Tunneling spectroscopy and inverse photoemission: image and field states. Scanning Tunneling Microscopy, 93-96.
    [23] Baratoff, A., Binnig, G., Fuchs, H., Salvan, F., & Stoll, E. (1986). Tunneling microscopy and spectroscopy of semiconductor surfaces and interfaces. Surface science, 168(1-3), 734-743.
    [24] Behm, R. J., Hösler, W., Ritter, E., & Binnig, G. (1986). Correlation between domain boundaries and surface steps: A scanning-tunneling-microscopy study on reconstructed Pt (100). Physical review letters, 56(3), 228.
    [25] Binnig, G., Fuchs, H., Stoll, E. (1986). Surface diffusion of oxygen atoms individually observed by STM. Surface Science Letters, 169(2-3), L295-L300.
    [26] Binnig, G., and H. Rohrer (1986) Scanning tunneling microscopy, IBM J. Res. Dev. 30, 355.
    [27] Gerber, C., Binnig, G., Fechs, H., Marti, O., Rohrer, H. (1986) Scanning tunneling microscope combined with a scanning electron microscope. Rev. Sci. Instrum. 57, 221.
    [28] Marti, O., Binnig, G., Rohrer, H., Salemink H. (1987) Low-temperature scanning tunneling microscope, Surface Science, 181, 1, 230
    [29] Binnig, G., & Rohrer, H. (1987). Scanning tunneling microscopy—from birth to adolescence. reviews of modern physics, 59(3), 615.
    [30] Binnig, G., Quate, C. F., & Gerber, C. (1986). Atomic force microscope. Physical review letters, 56(9), 930.
    [31] Chen, C. J. (2021). Introduction to Scanning Tunneling Microscopy Third Edition (Vol. 69). Oxford University Press, USA.
    [32] Wiesendanger, R. (1994). Scanning probe microscopy and spectroscopy: methods and applications. Cambridge university press.
    [33] Tomczak, N., & Goh, K. E. J. (Eds.). (2010). Scanning probe microscopy. World Scientific.
    [34] Bonnell, D. (Ed.). (2000). Scanning probe microscopy and spectroscopy: theory, techniques, and applications. John Wiley & Sons.
    [35] Voigtländer, B. (2015). Scanning probe microscopy: Atomic force microscopy and scanning tunneling microscopy. Berlin: Springer.
    [36] Neddermeyer, H. (Ed.). (2012). Scanning tunneling microscopy (Vol. 6). Springer Science & Business Media.
    [37] Meyer, E., Hug, H. J., & Bennewitz, R. (2003). Scanning probe microscopy: The Lab on a Tip (Vol. 4). New York: Springer.
    [38] Kittel, C., & McEuen, P. (2018). Introduction to solid state physics. John Wiley & Sons.
    [39] Güntherodt, H. J. (1992). Scanning tunneling microscopy I: general principles and applications to clean and adsorbate-covered surfaces. R. Wiesendanger (Ed.). Berlin: Springer-Verlag.
    [40] Pauli, W. (1924). Pauli exclusion principle. Naturwiss, 12, 741.
    [41] Bohr, N. (1913). I. On the constitution of atoms and molecules. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 26(151), 1-25.
    [42] 施敏、李明逵(2013)。半導體元件物理與製作技術(第三版)(曾俊元譯),全華圖書。(原著出版於2012年)
    [43] McEllistrem, M., Haase, G., Chen, D., & Hamers, R. J. (1993). Electrostatic sample-tip interactions in the scanning tunneling microscope. Physical review letters, 70(16), 2471.
    [44] Dombrowski, R., Steinebach, C., Wittneven, C., Morgenstern, M., Wiesendanger, R. (1999). Tip-induced band bending by scanning tunneling spectroscopy of the states of the tip-induced quantum dot on InAs (110). Physical Review B, 59(12), 8043.
    [45] Käfer, D., & Witte, G. (2005). Growth of crystalline rubrene films with enhanced stability. Physical Chemistry Chemical Physics, 7(15), 2850-2853.
    [46] Luo, Y., Brun, M., Rannou, P., & Grevin, B. (2007). Growth of Rubrene thin film, spherulites and nanowires on SiO2. physica status solidi (a), 204(6), 1851-1855.
    [47] El Helou, M., Medenbach, O., & Witte, G. (2010). Rubrene microcrystals: A route to investigate surface morphology and bulk anisotropies of organic semiconductors. Crystal growth & design, 10(8), 3496-3501.
    [48] 羅宗吉(2018)。薄膜科技與應用(第五版)。全華圖書。
    [49] 國家實驗研究院臺灣儀器科技研究中心(2001)。真空技術與應用。財團法人國家實驗研究院臺灣儀器科技研究中心。
    [50] Streetman, B. G., & Banerjee, S. (2000). Solid state electronic devices. New Jersey: Prentice hall.
    [51] Sze, S. M., Li, Y., & Ng, K. K. (2021). Physics of semiconductor devices. John wiley & sons.
    [52] Lin, K. Y., Wang, Y. J., Chen, K. L. et al. (2016). Rubrene polycrystalline films growth from vacuum deposition at various substrate temperatures. Journal of Crystal Growth, 439, 54-59.
    [53] Lin, K. Y., Wang, Y. J., Chen, K. L. et al. (2017). Role of molecular conformations in rubrene polycrystalline films growth from vacuum deposition at various substrate temperatures. Scientific reports, 7(1), 40824.
    [54] Chang, R., Overby, J. (2011). General Chemistry: The Essential Concepts, 6th Edition. McGraw-Hill.
    [55] McMurry, J. (1999). Organic chemistry, 5th edition. Brooks/Cole Thomson learning.
    [56] Chen, T., Li, M., & Liu, J. (2018). π–π stacking interaction: a nondestructive and facile means in material engineering for bioapplications. Crystal Growth & Design, 18(5), 2765-2783.
    [57] Hunter, C. A., & Sanders, J. K. (1990). The nature of. pi.-. pi. interactions. Journal of the American Chemical Society, 112(14), 5525-5534.
    [58] Vij, D. R. (Ed.). (2012). Luminescence of solids. Springer Science & Business Media.
    [59] Marsden, E. (Ed.). (2018). Photoluminescence: advances in Research and Applications. Photoluminescence: advances in research and applications.
    [60] Kumar, C. S. (Ed.). (2013). UV-VIS and photoluminescence spectroscopy for nanomaterials characterization (Vol. 111). Berlin: Springer.
    [61] Smith, E., & Dent, G. (2019). Modern Raman spectroscopy: a practical approach. John Wiley & Sons.
    [62] Bernath, P. F. (2020). Spectra of atoms and molecules. Oxford university press.
    [63] Ferraro, J. R. (2003). Introductory raman spectroscopy. Elsevier.
    [64] Hollas, J. M. (2004). Modern spectroscopy. John Wiley & Sons.
    [65] Saito, R., & Kataura, H. (2001). Optical properties and Raman spectroscopy of carbon nanotubes. In Carbon nanotubes: synthesis, structure, properties, and applications (pp. 213-247). Berlin, Heidelberg: Springer Berlin Heidelberg.
    第三章 實驗儀器
    [1] Omicron Nanotechnology. (2006). Instruction manual: UHV Evaporator EFM2/3/3s/4. Taunusstein, Germany: Omicron Nanotechnology.
    [2] Omicron Nanotechnology. (2000). The VT SPM User’s Guide. Taunusstein, Germany: Omicron Nanotechnology.
    第四章 實驗方法與步驟
    [1] Liu, F. (2021). Mechanical exfoliation of large area 2D materials from vdW crystals. Progress in Surface Science, 96(2), 100626.
    [2] Sozen, Y., Riquelme, J. J., Xie, Y., Munuera, C., & Castellanos‐Gomez, A. (2023). High‐Throughput Mechanical Exfoliation for Low‐Cost Production of van der Waals Nanosheets. Small Methods, 7(10), 2300326.
    [3] Huang, Y., Sutter, E., Shi, N. N. et al. (2015). Reliable exfoliation of large-area high-quality flakes of graphene and other two-dimensional materials. ACS nano, 9(11), 10612-10620.
    [4] Nečas, D., & Klapetek, P. (2012). Gwyddion: an open-source software for SPM data analysis. Open Physics, 10(1), 181-188.
    [5] Horcas, I., Fernández, R., Gomez-Rodriguez, J. M., Colchero, J. W. S. X., Gómez-Herrero, J. W. S. X. M., & Baro, A. M. (2007). WSXM: A software for scanning probe microscopy and a tool for nanotechnology. Review of scientific instruments, 78(1).
    [6] Origin(Pro), Version 2018. OriginLab Corporation, Northampton, MA, USA.
    第五章 實驗結果與討論
    [1] Liu, F. (2021). Mechanical exfoliation of large area 2D materials from vdW crystals. Progress in Surface Science, 96(2), 100626.
    [2] Sozen, Y., Riquelme, J. J., Xie, Y., Munuera, C., & Castellanos‐Gomez, A. (2023). High‐Throughput Mechanical Exfoliation for Low‐Cost Production of van der Waals Nanosheets. Small Methods, 7(10), 2300326.
    [3] Huang, Y., Sutter, E., Shi, N. N. et al. (2015). Reliable exfoliation of large-area high-quality flakes of graphene and other two-dimensional materials. ACS nano, 9(11), 10612-10620.
    [4] Lee, H. M., Moon, H., Kim, H. S., Kim, Y. N., Choi, S. M., Yoo, S., & Cho, S. O. (2011). Abrupt heating-induced high-quality crystalline rubrene thin films for organic thin-film transistors. Organic Electronics, 12(8), 1446-1453.
    [5] Käfer, D., & Witte, G. (2005). Growth of crystalline rubrene films with enhanced stability. Physical Chemistry Chemical Physics, 7(15), 2850-2853.
    [6] Park, S. W., Choi, J. M., Lee, K. H., Yeom, H. W., Im, S., & Lee, Y. K. (2010). Amorphous-to-crystalline phase transformation of thin film rubrene. The Journal of Physical Chemistry B, 114(17), 5661-5665.
    [7] Seo, M., Lee, J. Y., Rha, J. J., Kim, M., & Lee, M. (2020). Mass printing of colored natural patterns on Al plate by roll imprinting and thin film deposition. Journal of Materials Processing Technology, 278, 116502.
    [8] Seo, M., Kim, J., Oh, H., Kim, M., Baek, I. U., Choi, K. D., ... & Lee, M. (2019). Printing of Highly Vivid Structural Colors on Metal Substrates with a Metal‐Dielectric Double Layer. Advanced Optical Materials, 7(13), 1900196.
    [9] Cong, H., & Cao, W. (2004). Thin film interference of colloidal thin films. Langmuir, 20(19), 8049-8053.
    [10] Kats, M. A., & Capasso, F. (2016). Optical absorbers based on strong interference in ultra‐thin films. Laser & Photonics Reviews, 10(5), 735-749.
    [11] Wang, W., Zhang, X., & Wang, J. (2009). Rainbow fringes around crevice corrosion formed on stainless steel AISI 316 after ennoblement in seawater. Materials and corrosion, 60(10), 820-824.
    [12] Demuth, J. E. (2021). A re-evaluation of diffraction from Si (111) 7× 7: decoding the encoded phase information in the 7× 7 diffraction pattern. Physical Chemistry Chemical Physics, 23(13), 8043-8074.
    [13] Takayanagi, K., Tanishiro, Y., Takahashi, S., & Takahashi, M. (1985). Structure analysis of Si (111)-7× 7 reconstructed surface by transmission electron diffraction. Surface science, 164(2-3), 367-392.
    [14] Mori, K., Samata, S., Mitsugi, N. et al. (2020). Influence of silicon wafer surface roughness on semiconductor device characteristics. Japanese Journal of Applied Physics, 59(SM), SMMB06.
    [15] Alexander, A., McSkimming, B. M., Arey, B., Arslan, I., & Richardson, C. J. (2017). Nucleation and growth of metamorphic epitaxial aluminum on silicon (111) 7× 7 and surfaces. Journal of Materials Research, 32(21), 4067-4075.
    [16] Araki, K., Takeda, R., Sudo, H., Izunome, K., & Zhao, X. (2014). Dependence of Atomic-Scale Si (110) Surface Roughness on Hydrogen Introduction Temperature after High-Temperature Ar Annealing. Journal of Surface Engineered Materials and Advanced Technology, 2014.
    [17] Petri, R., Brault, P., Vatel, O., Henry, D., André, E., Dumas, P., & Salvan, F. (1994). Silicon roughness induced by plasma etching. Journal of applied physics, 75(11), 7498-7506.
    [18] Martin, M., & Cunge, G. (2008). Surface roughness generated by plasma etching processes of silicon. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, 26(4), 1281-1288.
    [19] 謝伯宜(2014)。矽在銀/矽(111)-(√3x√3)與銀/鍺(111)-(√3x√3)表面上的成長。碩士論文。國立臺灣師範大學
    [20] 吳佳原(2015)。矽單層在銀/矽(111)-(1x1)薄膜表面上的成長。碩士論文。國立臺灣師範大學
    [21] 許宏彰(2016)。矽烯與鐵在半導體表面上成長的研究。博士論文。國立臺灣師範大學
    [22] 蘇泰龍(2016)。矽單層在銀薄膜上的表面形貌與能譜分析。碩士論文。國立臺灣師範大學
    [23] Fujita, K., Watanabe, H., & Ichikawa, M. (1998). Scanning tunneling microscopy study on the surface and interface of Si (111)/SiO 2 structures. Journal of applied physics, 83(7), 3638-3642.
    [24] Niwa, M., Matsumoto, M., Iwasaki, H., Onada, M., & Sinclair, R. (1992). SiO2/Si interfaces studied by scanning tunneling microscopy and high resolution transmission electron microscopy. Journal of the Electrochemical Society, 139(3), 901.
    [25] Zandvliet, H. J., Elswijk, H. B., Van Loenen, E. J., & Tsong, I. S. T. (1992). Scanning tunneling microscopy and spectroscopy of ion-bombarded Si (111) and Si (100) surfaces. Physical Review B, 46(12), 7581.
    [26] Iwawaki, F., Tomitori, M., & Nishikawa, O. (1991). Scanning tunneling microscopy/scanning tunneling spectroscopy observation of step structures of Si (001) and (111) surfaces. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, 9(2), 711-715.
    [27] Mastrogiovanni, D. D. T., Mayer, J., Wan, A. S.et al. (2014). Oxygen incorporation in rubrene single crystals. Scientific reports, 4(1), 4753.
    [28] Sinha, S., Wang, C. H., & Mukherjee, M. (2017). Rubrene on differently treated SiO2/Si substrates: A comparative study by atomic force microscopy, X-ray absorption and photoemission spectroscopies techniques. Thin Solid Films, 638, 167-172.
    [29] Menard, E., Marchenko, A., Podzorov, V., Gershenson, M. E., Fichou, D., & Rogers, J. A. (2006). Nanoscale Surface Morphology and Rectifying Behavior of a Bulk Single‐Crystal Organic Semiconductor. Advanced Materials, 18(12), 1552-1556.
    [30] Boi, F. S., Taallah, A., Gao, S., Guo, J., Wang, S., & Corrias, A. (2021). Scanning tunneling microscopy identification of van Hove singularities and negative thermal expansion in highly oriented pyrolytic graphite with hexagonal moiré superlattices. Carbon Trends, 3, 100034.
    [31] Wang, Y., Ye, Y., & Wu, K. (2006). Simultaneous observation of the triangular and honeycomb structures on highly oriented pyrolytic graphite at room temperature: An STM study. Surface science, 600(3), 729-734.
    [32] Atamny, F., Spillecke, O., & Schlögl, R. (1999). On the STM imaging contrast of graphite: towards a “true’'atomic resolution. Physical Chemistry Chemical Physics, 1(17), 4113-4118.
    [33] Patil, S., Kolekar, S., & Deshpande, A. (2017). Revisiting HOPG superlattices: Structure and conductance properties. Surface Science, 658, 55-60.
    [34] Yıldız, D., & Gürlü, O. (2016). Apparent corrugation variations on moiré patterns on highly oriented pyrolytic graphite. Materials Today Communications, 8, 72-78.
    [35] Feng, L., Lin, X., Meng, L., Nie, J. C., Ni, J., & He, L. (2012). Flat bands near Fermi level of topological line defects on graphite. Applied Physics Letters, 101(11).
    [36] Lackinger, M., Griessl, S., Heckl, W. M., & Hietschold, M. (2002). STM and STS of coronene on HOPG (0001) in UHV–adsorption of the smallest possible graphite flakes on graphite. Analytical and bioanalytical chemistry, 374, 685-687.
    [37] Thrower, J. D., Friis, E. E., Skov, A. L. et al. (2013). Interaction between coronene and graphite from temperature-programmed desorption and DFT-vdW calculations: Importance of entropic effects and insights into graphite interlayer binding. The Journal of Physical Chemistry C, 117(26), 13520-13529.
    [38] 張元儒(2023)。掃描穿隧顯微術探究鐵誘導三溴化鉻表面形貌及電子特性的影響。碩士論文。國立臺灣師範大學
    [39] 黃宇濤(2023)。二硒化錸表面鍍鐵原子致形貌及電性變化。碩士論文。國立臺灣師範大學
    [40] Huang, B. W., Chang, Y. J., Lo, Y. C., & Fu, T. Y. (2024). Behavior of iron deposition on the surface structure and electrical properties of CrBr3 by scanning tunneling microscopy and spectroscopy. Thin Solid Films, 140409.
    [41] Fusella, M. A., Schreiber, F., Abbasi, K., Kim, J. J., Briseno, A. L., & Rand, B. P. (2017). Homoepitaxy of crystalline rubrene thin films. Nano letters, 17(5), 3040-3046.
    [42] Liu, L., Gu, Y. G., Shi, M. X., Tu, Y. B., Sun, K., Wang, J. Z., & Tao, M. L. (2022). Self-assembled and crystalline films of rubrene grown on Cd (0001) surface. Surface Science, 723, 122108.
    [43] Ueba, T., Terawaki, R., Morikawa, T. et al. (2013). Diffuse unoccupied molecular orbital of rubrene causing image-potential state mediated excitation. The Journal of Physical Chemistry C, 117(39), 20098-20103.
    [44] Schultz, J. F., Li, L., Mahapatra, S., Shaw, C., Zhang, X., & Jiang, N. (2019). Defining multiple configurations of rubrene on a Ag (100) surface with 5 Å spatial resolution via ultrahigh vacuum tip-enhanced Raman spectroscopy. The Journal of Physical Chemistry C, 124(4), 2420-2426.
    [45] Irkhin, P., Ryasnyanskiy, A., Koehler, M., & Biaggio, I. (2012). Absorption and photoluminescence spectroscopy of rubrene single crystals. Physical Review B, 86(8), 085143.

    無法下載圖示 電子全文延後公開
    2025/07/01
    QR CODE