簡易檢索 / 詳目顯示

研究生: 張正明
論文名稱: 非極性氮化鎵表面分解水產生氫氣
Hydrogen Generation from Water Splitting on Non-polar GaN Surface
指導教授: 蔡明剛
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 61
中文關鍵詞: 氮化鎵水分解製氫輔助催化劑
英文關鍵詞: GaN, Hydrogen Generation from Water Splitting, co-catalyst
論文種類: 學術論文
相關次數: 點閱:182下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 利用理論計算研究水在non-polar的GaN表面上分解產生氫氣的反應過程和反應路徑,探討整個過程中的能障以及反應的可能性,另外也加入輔助催化劑Pt和Rh,加入輔助催化劑有助於反應能障降低和氫氣的生成,並探討兩種輔助催化劑的差異和效能,可以幫助我們日後在實驗上輔助催化劑的選擇。
    輔助催化劑用兩種不同方式進行探討,一種是吸附在GaN表面的情況,另一種則是鑲嵌在GaN表面上,且Pt和Rh催化方式也有差別,Pt是和H先形成鍵結,H在和Pt上的H形成氫氣;Rh則是直接進行催化生成氫氣,且鑲嵌式的Rh生成氫氣的能障最低,且兩種輔助催化劑具有不同的催化效果,可能涉及了熱力學或是動力學催化。
    水分解第一個H的能障0.042eV,反應容易進行,但要分解第二個H產生氫氣的能障就非常高,因此,反應途經可能不是直接將水的兩個H直接分解,而是過程中會先形成O-O鍵來穩定氧原子,進而幫助H容易和O斷鍵,將H分離,探討了另一種不同的反應路徑,且和輔助催化劑一起加入探討,有助於我們更瞭解整個水分解產生氫氣的反應過程。

    A theoretical study is carried out to investigate hydrogen generation on non-polar GaN surface through water molecules decomposition. The various catalytic pathways are explored and the corresponding reaction barriers are calculated. Co-catalysts, Pt and Rh, are also taken into account in the computational models in order to understand the subsequent effect in hydrogen molecule formation and catalytic reaction barriers resulted from the presence of metal elements. The theoretical insights collected through the analysis on both transition metal elements could be helpful for the further co-catalyst development.
    Two types of models for the description of co-catalyst are introduced in the current study. The first model is metal atoms being physically absorbed on surface while the other one is embedding the metal atoms in the vacant sites of GaN materials. The catalytic mechanisms of Pt and Rh were also different. Hydrogen atom favored to bond with Pt with the additional hydrogen atom interacting with PtH intermediate. Rh element played more significant role of catalyzing the H-H bond formation especially the embedded Rh was found to have a lowest reaction barrier. However, the current study could not clarify if the bottleneck step happens at a thermodynamic step or kinetic step.
    The first barrier of splitting water is 0.042eV however the second barrier is quite high as more than 6 eV. The direct generation of breaking water into H2 and O2 is inaccessible without the external assistance, e.g. photon or applied voltage. Interestedly, the coupling of two OH radicals absorbed on the surface may lead to the formation O-O bond and formed HOOH. The breaking HO bond in HOOH may be another potential pathway for the source of H atoms.

    目錄 I 圖目錄 III 表目錄 V 摘要 1 Abstract 2 緒論 3 1-1前言 3 1-2光催化劑 4 1-3光催化劑的歷史 5 1-4光分解水的原理 6 1-5影響光催化劑分解水的因素 7 1-6輔助催化劑的功用與負載10 8 1-7可見光分解水催化劑的發展26、28 10 1-8文獻回顧-氮氧化鋅鎵(GaNZnO)19~28 14 1-9研究目標 16 理論計算原理 17 2-1前言 17 2-2密度泛函理論 17 2-2.1Hohenberg-Kohn方法 18 2-2.2Kohn-Sham 方法 20 2-2.3自洽場計算 22 2-3近似方法 22 2-4虛位勢 24 2-5週期性 26 2-6 尋找過渡態和反應路徑的理論方法 28 2-6.1 勢能面 28 2-6.2 找尋過渡態的演算方法( LST/QST/CG ) 30 2.7物理吸附和化學吸附 31 2-8 CASTEP計算參數 32 結果與討論 33 3-1水在GaN表面的吸附 33 3-2輔助催化劑(co-catalysts)的影響和比較 37 3-3輔助催化劑的DOS圖比較 49 3-4輔助催化劑和水分解反應路徑圖 52 3-5 輔助催化劑和HO-OH的反應路徑圖 53 3-6結論 56 參考文獻 58

    1. 張立群譯,“光清淨革命-活躍的二氧化鈦光觸媒",協志工業叢書印行, 2000
    2. 藤嶋昭,本多健一,菊池真一, “工業化學", 1969, 72, 108.
    3. A.Fujishima,K.Honda,Nature,1972,238,37.
    4. A.Kudo,H.Kato,I.Tsuji,Chem.Lett.2004,33,1534.
    5. A.Kudo,Catal.Surv.Asia,2003,31,7.
    6. A.Mills,S.L.Hnute,J.Photochem.Photobiol.A:Chem.1997,108,1.
    7. M.Cratzel,Nature,2001,414,338.
    8. A.Kudo,Y.Miseki,Chem.Soc.Rev.2009,38,253.
    9. F.E.Osterloh,Chem.Mater.2008,20,35.
    10. K.Maeda,K.Domen,J.Phys.Chem.C,2007,111,7851.
    11. A.Kudo,J.Hydrogen Ener.2006,31,197.
    14. A.Kudo,H.Kato,Chem.Phys.Lett.2000,331,373.
    15. S.Licht,J.Phys.Chem.B,2003,107,4253.
    16. A.Galinska,J.Walendziewski,Energy & Fuels,2005,19,1143.
    17. K.Sayama,K.Mukasa,R.Abe,Y.Abe,H.Arakawa,Chem.Commum.2001,23,2416.
    20. D.A.Tryk,A.Fujishima,K.Honda,Electro.Acta.2000,45,2363.
    21. H.Kato,A.Kudo,Chem.Phys.Lett.1998,295,487.
    23. W.H.Lin,C.Cheng,C.C.Hu,H.Teng,Appl.Phys.Lett.2006,89,211904.
    24. K.Domen,S.Naito,T.Onishi,K.Tamaru,J.Phys.Chem.1982,86,3657.
    25. M.Yoshino,M.Kakihana,Chem.Mater.2002,14,3369.
    26. A.Kudo,H.Kato,I.Tsuji,Chem.Lett.2004,33,1534.
    27. R.Abe,K.Sayama,K.Domen,H.Arakawa,Chem.Phys.Lett.2002,362,441.
    28. M.Higashi,R.Abe,K.Teramura,T.Takato,B.Ohtani,K.Domen,Chem.Phys.
    Lett.2008,452,120.
    29. K.Maeda,K.Teramura,N.Saito,Y.Inoue,K.Domen,Bull.Chem.Soc.Jpn.
    2007,80,1004.
    30. K.Maeda,K.Teramura,T.Takata,M.Hara,N.Saito,K.Toda,Y.Inoue,H. Kobayashi,K.Domen,J.Phys.Chem.B,2005,109,20504.
    31. K.Maeda,H.Terashima,K.Kase,K.Domen,Appl.Catal.A:Gener.2009,357, 206.
    35. M.Hara,G.Hitoki,T.Takata,J.N.Kondo,H.Kobayashi,K.Domen, Catal.Today,2003,518,555.
    32. X.Zong,H.Yan,G.Wu,G.Ma,F.Wen,L.Wang,C.Li,J.Am.Chem.Soc.2008,130, 7176.
    33. X.wang,K.Maeda,Y.Lee,K.Domen,Chem.Phys.Lett.2008,457,134.
    34. K.sayama,H.Arakawa,J.Chem.Soc.FaradyTrans.1997,93,1647.
    35. K.Maeda,K.Terumura,D.Lu,N.Saito,Y.Inoue,K.Domen,Angew.Chem.Int. Ed.2006,45,7806.
    36. K.Maeda,K.Teramura,K.Domen,J.Catal.2008,254,198.
    37. Po-Tuan Chen,Chia-Liang Sun,Michitoshi Hayashi,J.Phys.Chem.C 2010, 114,18228–18232
    38. Osbert Zheng Tan,K.H.Tsai,MichaelC.H.Wu,Jer-Lai Kuo J.Phys.Chem. C 2011,115,22444–22450
    39. Kresse,G.;Hafner,J.Physical Review B 1993,47,558
    40. Kresse,G.;Hafner,J.Physical Review B 1993,49,14251
    41. W.Kohn,L.J.Sham,Phys.Rev.1965,140,1133−1138.
    42. H.J.Monkhorst,J.D.Pack,Phys.Rev.1976,13,5188−5192.
    43. J.D.Pack,H.J.Monkhorst,Phys.Rev.1977,16,1748−1749.
    44. D.R.Hamann,M.Schlüter,C.Chiang,Phys.Rev.Lett.1979,43,1494−1497.
    45. G.B.Bachelet,D.R.Hamann,M.Schluter,Phys.Rev.1982,26,4199−4228.
    46. A.F.Wright,J.S.Nelson,Phys.Rev.1994,50,2159−2165.
    47. A.F.Wright,S.R.Atlas,Phys.Rev.1994,50,15248−15260.
    48. O.K.Andersen,Phys.Rev.1975,12,3060−3083.
    49. L.E.Ramos,L.K.Teles,L.M.R.Scolfaro,J.L.P.Castineira,A.L.Rosa,J.R. Leite,Phys.Rev.2001,63,165210(1−10).
    50.李明憲,2005,CASTEP / Materials Studio 計算化學進階訓練課程,
    51. Tuckerman,M.Laasonen,K.Sprik,Journal of Chemical Physics,1995,103,1,150-161.
    52. M.Fuchs,J.L.F.DaSilva,C.Stampfl,J.Neugebauer,M.Scheffler,Phys.Rev. 2002,65,245212(1−13).
    53. J.Kunes,R.Laskowski,Phys.Rev. 2002,70,174415(1−6).
    54. J.D.Perdew,Y.Wang,Phys.Rev.1986.33,8800.
    54. Materials Studio 5.0, Accelrys Software Inc., Materials Studio Online
    Help.
    55. Hammer,B.,Hansen,L.B.,Norskov,J.K.Phys.Rev.1999,59,7413.
    56. A.Nilssona,L.G.M.Pettersson,B.Hammer,T.Bligaard,C.H.
    Christensen,J.K.Norskov,Catalysis Letters,2005,100,111.
    57. Perdew,J.P.;Chevary,J.A.;Vosko,S.H.;Jackson,K.A.;pederson,M.R;
    Singh,D.J.;Fiolhais,C.Physical Review B 1992,46,6671
    58. Perdew,J.P.;Wang,Y.Physical Review B 1992 45,13244
    59. Perdew,J.P.;Burke,K.;Ernzerhof,M.Physical Review Letters 1996,77,3865
    60. Gregory J.Kubas,Journal of Organometallic Chemistry,2001,635 37–68
    61. Gregory J.Kubas,Journal of Organometallic Chemistry,2009,694,2648–2653
    62. John Meurig Thomas,Robert Raja, Dewi W. Lewis, Angew. Chem. Int. Ed. 2005,44,6456–6482
    63. Donghai Mei,Ayman M. Karim,Yong Wang, J.Phys.Chem C 2011, 115, 8155–8164

    下載圖示
    QR CODE