簡易檢索 / 詳目顯示

研究生: 符永遨
Yeong-Aur Fwu
論文名稱: 高分子刷蒙地卡羅電腦模擬
Monte Carlo Simulation of Polymer Brush
指導教授: 陳啟明
Chen, Chi-Ming
學位類別: 碩士
Master
系所名稱: 物理學系
Department of Physics
論文出版年: 2000
畢業學年度: 88
語文別: 中文
中文關鍵詞: 蒙地卡羅模擬高分子刷高分子鏈單元分子分子鏈長度覆蓋率
英文關鍵詞: Monte Carlo Simulation, Polymer Brush, Polymer Chain, Monomer, Chain Length, Coverage
論文種類: 學術論文
相關次數: 點閱:241下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘 要
    我們的三維蒙第卡羅模擬將以鍵振盪模型來探究柔性與半柔性的高分子刷平衡結構及諸多性質。在我們的模擬結果中,長柔性的高分子刷與自洽場理論所預測的行為大致相符,在低覆蓋率時,拋物線形式的分子刷在接近基板時有剝離層的出現,但是在高覆蓋率的時候由於接近基板處的高分子密度而使得剝離層消失。長柔性分子刷的高度正比於 , 為分子鏈長度, 為覆蓋率。在短鍵的情形 ,分子刷高度大約正比於 ,這是由於一非線性的伸張能量所造成, 。對半柔性的分子鏈而言,分子刷高度可以分為兩項,一項為 ,此項與分子鍵強度 有關,另一項為 ,則與分子鍵強度無關, 比 小很多,而類似的結果,也在端點分子間距離出現。
    此外,我們也討論了分子刷系統的均向─針向相變,當我們改變覆蓋率、分子鏈長度及分子鍵強度時,我們發現分子刷系統的均向─針向相變為一連續的相變。分子鍵的角度分布也在不同溫度時被量測,最後,我們將討論局部的覆蓋變異將對分子密度分布所造成的影響。

    Abstract
    Three dimensional Monde-Carlo simulations of flexible and semi-flexible polymer brushes at various coverage are carried out to study their equilibrium structure and attendant properties by using the bond fluctuation model. Our simulation results of long flexible polymer brushes are in general consistent with predictions of the self-consistent field theory. At low grafting densities, a parabolic brush with a depletion layer near the substrate is observed, while the depletion layer disappears and the monomer density near the substrate is enhanced due to the compression of monomers outside this region at high grafting densities. The brush height of long flexible polymers is proportional to where is the number of monomers per chain and is the grafting density. For short chains , the brush height is roughly proportional to , which indicates a nonlinear stretching energy . For semi-flexible chains, the brush height can be decomposed into a term depending on the chain stiffness and the other term independent of the stiffness. is found much smaller than . Similar results have been found for the end to end distance of the chains. Moreover, we study the isotropic-to-nematic transition of polymer brushes by varying the grafting density , chain length , and the chain stiffness. The isotropic-to-nematic transition of polymer brush is found to be a continuous phase transition from our simulation results. The angular distribution of polymer bonds has also been measured at various temperature. Finally, we discuss the effects of fluctuation of local grafting density on the monomer density distribution.

    目 次 英文摘要 中文摘要 頁次 第一章 緒論 1 第二章 鍵振盪模型 2.1.為何要鍵振盪模型? 4 2.2.鍵振盪模型對單元分子及分子鍵的描述 4 2.3鍵振盪模型在高分子刷系統中的演算法 5 2.4輸出檔的物理意義 8 第三章 均值場模型及自洽場理論的預測 3.1均值場模型 20 3.2自洽場理論 24 第四章 與 對高分子刷行為的影響 4.1分子刷高度隨 與 之變化 36 4.2端點分子間平均距離隨 與 之變化 40 4.3自由端最大出現機率位置隨 與 之變化 44 第五章 高分子刷系統的相變及鍵角變化. 5.1均向態至針向態之相變 57 5.2分子鍵彎折角度隨 的變化 62 5.3分子鍵彎折能量型態的改變 66 第六章 佈植變異 6.1覆蓋變異率的定義 80 6.2覆蓋變異率對分子刷高度的影響 81 第七章 結論 93 參考資料 94

    References
    (1) I. Carmensin and K. Kremer , Macromolecules 21, 2819 (1988).
    (2) C. M. Chen and P. G. Higgs , J. Chem. Phys. 108, 4305 (1998).
    (3) P. Y. Lai and K. Binder , J. Chem. Phys. 97, 586 (1992).
    (4) S. Alexander, J. Phys. (Paris) 38, 977 (1977).
    (5) P. G. de Gennes, Macromolecules 13, 1069 (1980).
    (6) P. Flory, Principles of Polymer Chemistry (Cornell Univ. Press, Ithaca, NY, 1981).
    (7) P. Auroy, L. Auvray and L. Leger, Phys. Rev. Lett. 66, 719 (1991).
    (8) S. T. Milner, T. A. Witten and M. E. Cates, Macromolecules 21, 2610 (1988).
    (9) A. Chakrabarti and R. Toral, Macromolecules 23, 2016 (1990).
    (10) A. R. Khokhlov and A. N. Semenov, Physica A 108, 546 (1981).
    (11) D. V. Kuzentsov and Z. Y. Chen, J. Chem. Phys. 109, 7017 (1998).
    (12) A. Y. Grosberg and A. R. Khokhlov, Statistical Physics of Macromolecules (American Institute of Physics Press, New York, 1994).
    (13) S. T. Milner, T. A. Witten and M. E. Cates, Macromolecules 22, 853 (1989).
    (14) H. J. Taunton, C. Toprakcioglu, L. J. Fetters and J. Klein, Macromolecules 23 , 571 (1990).

    QR CODE