簡易檢索 / 詳目顯示

研究生: 周明諭
Chou, Ming-Yu
論文名稱: 快速掃瞄式光學延遲線為基礎之相位對比量測法
RSOD-based phase contrast measurement
指導教授: 郭文娟
Kuo, Wen-Chuan
學位類別: 碩士
Master
系所名稱: 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 英文
論文頁數: 63
中文關鍵詞: 快速掃瞄式光學延遲線相位
英文關鍵詞: OCT, RSOD, phase
論文種類: 學術論文
相關次數: 點閱:115下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 此篇研究中,我們發展一套平衡式光學同調干涉儀並且結合快速掃描光學延遲線(RSOD)和馬赫-詹德干涉儀(Mach-Zehnder interferometer)來產生相位資訊。利用相位解析OCT (phase-resolved OCT)成功的展現奈米尺度的微小相位差異影像,這是以往傳統強度式的OCT所無法偵測到的。相位靈敏度的表現在相位解析OCT中是一個很重要的因素,相位的飄動可能是因為開放式空間環境擾動所造成的,當我們結合共路徑架構和平衡式偵測系統,共同的雜訊就可被減掉,並且改善相位靈敏度。

    In this research, we have developed a balanced optical low coherence interferometer to yield phase information by incorporating the rapid-scanning optical delay lines (RSOD) into a Mach-Zehnder interferometer. We have shown that small optical path differences with nanometer scale, which are invisible in conventional intensity-based OCT image, can be successfully imaged by phase-resolved OCT. The phase sensitivity is an important performance factor in phase-resolved OCT. The phase drift caused by environmental disturbance is due to the free-space system configuration. When we combined common-path configuration and balanced detection system, the common noise was canceled and the phase sensitivity can be improved.

    Chinese Abstract …………………………………………………………………..… v English Abstract ………………………………………………….……………..……vi Chapter 1 Introduction ……………………………………………..……………...1 1.1 Motivation …………………………………………………………………1 1.2 Brief review of time domain phase contrast optical coherence Tomography ………………………………………………….……………2 1.3 Objective and organization of the thesis ………………………………..…7 Chapter 2 Principle ………………………………………………….……………..9 2.1 Mach-Zehnder interferometer ………………………………………….....9 2.2 Balanced detection system ………………………………………………10 2.3 Hilbert transformation……………………………………………………16 Chapter 3 Material and Method ………………………………………………….20 3.1 Experimental setup ………………………………………………….…...20 3.2 Wollaston and Nomarski prism ………………………………………….23 Chapter 4 Results ………………………………………………….…….…….....27 4.1 Measurement of unbalanced and balanced detection systems…………...27 4.2 Phase stability test ………………………………………………….……28 4.3 Surface Displacement Measurements ...…………………………………29 4.4 Normaski experiment ……………………………………………………31 Chapter 5 Discussion ………………………………………………….………….34 Chapter 6 Summary ………………………………………………….…………...49 References ………………………………………………….……………..…………50

    1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Pufialito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178–1181 (1991).
    2. C. K. Hitzenberger, and A. F. Fercher, "Differential phase contrast in optical coherence tomography," Opt. Lett. 24, 622–644 (1999).
    3. C. G. Rylander, D. P. Davé, T. Akkin, T. E. Milner, K. R. Diller, and A. J. Welch, "Quantitative phase-contrast imaging of cells with phase-sensitive optical coherence microscopy," Opt. Lett. 29, 1509-1511 (2004).
    4. T. A. C. Joo, B. Cense, B. H. Park, and J. F. de Boer, "Spectral-domain optical coherence phase microscopy for quantitative phase-contrast imaging," Opt. Lett. 30, 2131-2133 (2005).
    5. J. F. d. Boer, T. E. Milner, M. J. C. v. Gemert, and J. S. Nelson, "Two-dimensional birefringence imaging in biological tissue by polarization-sensitive optical coherence tomography," Opt. Lett. 22, 934-936 (1997).
    6. K. Schoenenberger, B. W. Colston, Jr., D. J. Maitland, L. B. D. Silva, and M. J. Everett, "Mapping of birefringence and thermal damage in tissue by use of polarization-sensitive optical coherence tomography," Appl. Opt. 37, 6026-6036 (1998).
    7. M. Sticker, C. K. Hitzenberger, R. Leitgeb, and A. F. Fercher, "Quantitative differential phase measurement and imaging in transparent and turbid media by optical coherence tomography," Opt. Lett. 26, 518-520 (2001).
    8. M. Sticker, M. Pircher, E. Götzinger, H. Sattmann, A. F. Fercher, and C. K. Hitzenberger, "En face imaging of single cell layers by differential phase-contrast optical coherence microscopy," Opt. Lett. 27, 1126-1128 (2002).
    9. D. P. Dav´e, and T. E. Milner, "Optical low-coherence reflectometer for differential phase measurement," Opt. Lett. 25, 227–279 (2000).
    10. G. J. Tearney, B. E. Bouma, and J. G. Fujimoto, "High-speed phase- and group-delay scanning with a grating-based phase control delay line," Opt. Lett. 22 1811-1813 (1997).
    11. E. Hecht, Optics (Addison Wesley, San Francisco, 2002).
    12. K. Iizuka, Elements of photonics (Wiley Interscience, New York, 2002).
    13. A. M. Rollins, and J. A. Izatt, "Optimal interferometer designs for optical coherence tomography," Opt. Lett. 24, 1484-1486 (1999).
    14. P. R. Morkel, R. I. Laming, and D. N. Payne, Electron. Lett. 26, 96 (1990).
    15. G. B. Arfken, and H. J. Weber, MATHEMATIC Methods for Physicistic (Elsevier Academic Press, 2005).
    16. Goodman, and J. W, Introduction to Fourier optics (McGraw-Hill, San Francisco 1968).
    17. W. H. Steel, Interferometry (Cambrige university press, Cambrige, 1983).
    18. D. L. Lessor, J. S. Hartman, and R. L. Gordon, "Quantitative surface topography determination by Nomarski reflection microscopy. 1. Theory," J. Opt. Soc. Am. 69, 357-366 (1979).
    19. B. J. Vakoc, S. H. Yun, J. F. d. Boer, G. J. Tearney, and B. E. Bouma, "Phase-resolved optical frequency domain imaging," Opt. Express 13, 5483-5493 (2005).
    20. B. H. Park, M. C. Pierce, B. Cense, S.-H. Yun, M. Mujat, G. J. Tearney, B. E. Bouma, and J. F. d. Boer, "Real-time fiber-based multi-functional spectraldomain optical coherence tomography at 1.3 μm," Opt. Express 13, 3931-3944 (2005).
    21. T. Akkın, D. P. Davé, T. E. Milner, and H. G. R. III, "Interferometric Fiber-Based Optical Biosensor to Measure Ultra-Small Changes in Refractive Index," Proc. of SPIE 4616, 9-13 (2002).
    22. C. Fang-Yen, M. C. Chu, H. S. Seung, R. R. Dasari, and M. S. Feld, "Noncontact measurement of nerve displacement during action potential with a dual-beam low-coherence interferometer," Opt. Lett. 29, 2028-2030 (2004).
    23. A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, "Measurement of intraocular distances by backscattering spectral interferometry," Optics Communications 117, 43-48 (1995).
    24. M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, "In vivo human retinal imaging by Fourier domain optical coherence tomography," Journal of Biomedical Optics 7, 457-463 (2002).
    25. A. B. Vakhtin, D. J. Kane, W. R. Wood, and K. A. Peterson, "Common-path interferometer for frequency-domain optical coherence tomography," Appl. Opt. 42, 6953-6958 (2003).
    26. M. A. Choma, A. K. Ellerbee, C. Yang, T. L. Creazzo, and J. A. Izatt, "Spectral-domain phase microscopy," Opt. Lett. 30, 1162-1164 (2005).
    27. C. Joo, T. Akkin, B. Cense, B. H. Park, and J. F. d. Boer, "Spectral-domain optical coherence phase microscopy for quantitative phase-contrast imaging," Opt. Lett. 30, 2131-2133 (2005).
    28. M. V. Sarunic, S. Weinberg, and J. A. Izatt, "Full-field swept-source phase microscopy," Opt. Lett. 31, 1462-1464 (2006).
    29. D. C. Adler, R. Huber, and J. G. Fujimoto, "Phase-sensitive optical coherence tomography at up to 370,000 lines per second using buffered Fourier domain mode-locked lasers," Opt. Lett. 32, 626 (2007).
    30. C. Joo, K. H. Kim, and J. F. d. Boer, "Spectral-domain optical coherence phase and multiphoton microscopy," opt. Lett. 32, 623-625 (2007).
    31. A. H. Bachmann, R. Michaely, T. Lasser, and R. A. Leitgeb, "Dual beam heterodyne Fourier domain optical coherence tomography," Opt. Express 15, 9254-9266 (2007).

    下載圖示
    QR CODE