研究生: |
佟顯榮 Tong, Sian-Rong |
---|---|
論文名稱: |
固態轉化石墨烯於氧化鋅奈米柱
發光二極體效能之研究 A study of enhanced UV-emissions through a growth of transfer-free graphene on n-ZnO nanorods/p-GaN light-emitting diodes |
指導教授: |
李亞儒
Lee, Ya-Ju |
學位類別: |
碩士 Master |
系所名稱: |
光電工程研究所 Graduate Institute of Electro-Optical Engineering |
論文出版年: | 2016 |
畢業學年度: | 104 |
語文別: | 中文 |
論文頁數: | 39 |
中文關鍵詞: | 增強紫外光 、轉移石墨烯 、異質接面二極體 |
英文關鍵詞: | enhanced UV emissions, transfer-free graphene, heterojunction light-emitting diodes |
DOI URL: | https://doi.org/10.6345/NTNU202204276 |
論文種類: | 學術論文 |
相關次數: | 點閱:112 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在本論文研究中,我們提出一具有前瞻性的策略來探討利用免轉移基板技術將薄層石墨烯片直接成長於n型氧化鋅奈米柱/p型氮化鎵異質接面發光二極體(LED)以提升該元件紫外發光之特性。我們利用射頻磁控濺鍍系統將非晶碳與金屬鎳薄膜鍍在LED元件上,再經由快速熱退火處理形成薄層石墨烯片於元件表面。結果發現,在低溫退火階段(~攝氏400度),非晶碳會擴散至金屬鎳的上面並形成碳化鎳;在高溫退火階段(攝氏800-1100度),我們發現鎳會自動蒸發,亞穩態的碳化鎳逐漸地轉變為石墨烯。經由一系列測試我們發現在鎳/碳比為65奈米/5奈米、退火溫度為攝氏1100度以及升溫速率為每秒攝氏15度的條件下,該實驗有最佳化的條件;經由拉曼光譜量測在最佳化條件下的石墨烯I2D/IG訊號比為0.42。與對照組(無石墨烯)相比,我們提出的元件結構搭配薄層石墨烯片其導通電壓縮小了3倍,這意味著其片電阻有顯著的下降情形。在電致發光部分,由於大部分注入的載子會局限在氧化鋅奈米柱一側,隨著注入電流的增加,我們提出的元件結構其紫外發光亦跟著增加,其現象可歸因於量子侷限效應。根據上述結果充分說明了我們提出的元件結構對於未來高效率LED在紫外發光的發展具有相當的前瞻性。
In this study, a promising strategy for enhanced UV emissions through a growth of transfer-free graphene on the n-ZnO nanorods(NRs) /p-GaN heterojunction light-emitting diodes (LED) is described. Few graphene layers are directly formed atop the LED device by the post-RTA treatment on sputtered amorphous carbon (a-C) and nickel (Ni) layers. It was found that in the low-temperature annealing stage (~400℃), the a-C diffuses into the Ni top layer to form Ni3C, while in the high-temperature annealing stage (800-1100℃), the metastable Ni3C transforms gradually into graphene by autonomous evaporation of Ni. Under the optimized fabrication condition (Ni/C=65nm/5nm, RTA=1100 ℃ with a heating rate~15 ℃/s), the I2D/IG ratio of 0.42 by Raman spectrum was obtained. As compared with the reference LED without graphene atop, the turn-on voltage of proposed hybridized structure is decreased by about 3 times, implying a significant decrease in the sheet resistance of the proposed device. The UV emission of electroluminescence (EL) spectra of treatment LED increases with the increasing injection currents, mainly attributed to the quantum confinement effect because the most of injected carriers are confined within the ZnO NRs. It suggests that the proposed hybridized structure will pave the way for the development of high efficient LED in the UV emission regime.
[1] Xinyi Chen, Alan Man Ching Ng, Fang Fang, Yip Hang Ng, Aleksandra Djurišić), Hoi Lam Tam, Kok Wai Cheah, Shangjr Gwo, Wai Kin Chan, Patrick Wai Keung Fong, Hsian Fei Lui and Charles Surya,“ZnO nanorod/GaN light-emitting diodes: The origin of yellow and violet emission bands under reverse and forward bias” J. Appl. Phys. 110, 094513 (2011)
[2] J R Sadaf, M Q Israr, S Kishwar, O Nur and M Willander,“Forward- and reverse-biased electroluminescence behavior of chemically fabricated ZnO nanotubes/GaN interface” Semiconductor Science and Technology, Volume 26, Number 7
[3] Lichun Zhang, Qingshan Li, Chong Qu, Zhongjun Zhang, Ruizhi Huang and Fengzhou Zhao,“White electroluminescence from ZnO nanorods/p-GaN heterojunction light-emitting diodes under reverse bias” J. Opt. 15 (2013) 025003 (6pp)
[4] H. C. Chen, M. J. Chen, Y. H. Huang, W. C. Sun, W. C. Li, J. R. Yang, H. Kuan, and M. Shiojiri“White-Light Electroluminescence From n-ZnO/p-GaN Heterojunction Light-Emitting Diodes at Reverse Breakdown Bias” IEEE Trans Electron Devices 58、3970(2011)
[5] Qiu-Ming Fu, Wei Cao, Guo-Wei Li, Zhi-Dong Lin, Zhe Chen, Chuan-Bo Xu, Ya-Fang Tu, Zhi-Bin Ma,“Blue/green electroluminescence from a ZnO nanorods/p-GaN heterojunction light emitting diode under different reverse bias”Appl Surf Sci 293、225(2014)
[6] Oleg Lupan, Thierry Pauporté, and Bruno Viana,“Low-Voltage UV-Electroluminescence from ZnO-Nanowire Array/p-GaN Light-Emitting Diodes” Advanced Materials Volume 22, Issue 30, pages 3298–3302, (August 10),( 2010)
[7] Lupan;Thierry Pauporté ; Oleg Lupan ; Bruno Viana ; T. le Bahers," ZnO nanowire-based light-emitting diodes with tunable emission from near-UV to blue ", Proc. SPIE 8641, Light-Emitting Diodes: Materials, Devices, and Applications for Solid State Lighting XVII, 86410L (March 4, 2013)
[8] Sung Won Hwang, Dong Hee Shin, Chang Oh Kim, Seung Hui Hong, Min Choul Kim, Jungkil Kim, Keun Yong Lim, Sung Kim, Suk-Ho Choi, Kwang Jun Ahn, Gunn Kim, Sung Hyun Sim, and Byung Hee Hong,“Plasmon-Enhanced Ultraviolet Photoluminescence from Hybrid Structures of Graphene/ZnO Films” Phys. Rev. Lett. 105, 127403 – Published 15 September 2010
[9] JR Sadaf, MQ Israr, S Kishwar, O Nur, and M Willander,“White Electroluminescence Using ZnO Nanotubes/GaN Heterostructure Light-Emitting
37
Diode” Nanoscale Res Lett. 2010; 5(6): 957–960.
[10] Ja Sun Shin, Hagyoul Bae, Euiyoun Hong, Jaeman Jang, Daeyoun Yun, Jieun Lee, Dae Hwan Kim, Dong Myong Kim,“Modeling and extraction technique for parasitic resistances in MOSFETs Combining DC I–V and low frequency C–V measurement Solid-State Electronics Volume 72, June 2012, Pages 78–81
[11] S. Tongay, M. Lemaitre, X. Miao, B. Gila, B. R. Appleton, and A. F. Hebard,“Rectification at Graphene-Semiconductor Interfaces: Zero-Gap Semiconductor-Based Diodes” Phys. Rev. X 2, 011002 – Published 17 January 2012
[12] LED inside:2016東南亞LED照明市場規模及趨勢分析
http://www.ledinside.com.tw/research/20160412-32372.html
[13] Ahmad Echresh, Chan Oeurn Chey, Morteza Zargar Shoushtari, Omer Nur and Magnus Willander, “Tuning the emission of ZnO nanorods based light emitting diodes using Ag doping” J. Appl. Phys. 116, 193104 (2014)
[14] Sanghyun Ju , Kangho Lee , and David B. Janes,“Low Operating Voltage Single ZnO Nanowire Field-Effect Transistors Enabled by Self-Assembled Organic Gate Nanodielectrics” Nano Lett., 2005, 5 (11), pp 2281–2286
[15] Huang MH, Mao S, Feick H, Yan H, Wu Y, Kind H, Weber E, Russo R, Yang P, “Room-temperature ultraviolet nanowire nanolasers. Science.2001 Jun 8;292(5523):1897-9.
[16] Ya. I. Alivov, E. V. Kalinina, A. E. Cherenkov, D. C. Look, B. M. Ataev, A. K. Omaev, M. V. Chukichev and D. M. Bagnall,“Fabrication and characterization of n-ZnO/p-AlGaNn-ZnO/p-AlGaN heterojunction light-emitting diodes on 6H-SiC substrates”Appl.Phys.Lett.83,4719(2003)
[17] Kohjiro Hara, Takaro Horiguchi, Tohru Kinoshita, Kazuhiro Sayama, Hideki Sugihara, Hironori Arakawa, “Highly Efficient Photon-to-Electron Conversion of Mercurochrome-sensitized Nanoporous ZnO Solar Cells” Chemistry Letters Vol. 29 (2000) No. 4 P 316-317
[18] 蔡信行、孫光中,新文京開發出版股份有限公司,2004,第152頁。
[19] J. Zheng, H.Yu, X. Li, S. Zhang, “Enhanced photocatalytic acticity of TiO2 nano-structured thin film with a silver hierarchical configuration”, Applied Surface Science 254 (2008) 1630.
[20] B. Yao, L. X. Guan, G. Z. Xing, Z. Z. Zhang, B. H. Li, Z. P. Wei, D. Z. Shen, “P-type conductivity and stability of nitrogen-doped zinc oxide prepared by magnetron sputtering” Journal of Luminescence Volumes 122–123, January–April 2007, Pages 191–194.
[21] J. Lu, Y. Zhang, Z. Ye, L. Wang, B. Zhao, J. Huang, “p-type ZnO films deposited by DC reactive magnetron sputtering at different ammonia concentrations”,
38
Materials Letters 57 (2003) 3311.
[22] X. B. Zhang, Z. L. Pei, J. Gong, C. Sun,“Investigation on the electrical properties and inhomogeneous distribution of ZnO:Al thin films prepared by dc magnetron sputtering at low deposition temperature” J. Appl. Phys. 101, 014910 (2007)
[23] Preetam Singh, Amit Kumar Chawla, Davinder Kaur, Ramesh Chandra,“Effect of oxygen partial pressure on the structural and optical properties of sputter deposited ZnO nanocrystalline thin films” Materials Letters Volume 61, Issue 10, April 2007, Pages 2050–2053
[24] Ki-Chul Kim,“Studies on ZnO Nanomaterials and Effect of Al-doped on its Structure and Propertie”, J.Cryst.Growth 277,352-358(2005)
[25] Chen Shaoqiang, Zhang Jian, Feng Xiao, Wang Xiaohua, Luo laiqiang, Shi Yanling, Xue Qingsong, Wang Chang, Zhu Jianzhong, Zhu Ziqiang, “Nanocrystalline ZnO thin films on porous silicon/silicon substrates obtained by sol–gel technique” Applied Surface Science Volume 241, Issues 3–4, 15 March 2005, Pages 384–391
[26] W. C. Koehler,“Magnetic Properties of Rare‐Earth Metals and Alloys” J. Appl. Phys. 36, 1078 (1965)
[27] L. Vayssieres ,“Growth of Arrayed Nanorods and Nanowires of ZnO from Aqueous Solutions” Advanced Materials Volume 15, Issue 5, pages 464–466, March, 2003
[28] 【微觀世界】發現碳元素(Carbon)http://case.ntu.edu.tw/blog/?p=1439
[29] 當石墨烯遇上LED?http://www.infocom.tw/Page_20150331
[30] Nair RR, Blake P, Grigorenko AN, Novoselov KS, Booth TJ, Stauber T, Peres NM, Geim AK., “Fine structure constant defines visual transparency of graphene” Science. 2008 Jun 6;320(5881):1308
[31] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang1, Y. Zhang1, S. V. Dubonos, I. V. Grigorieva1, A. A. Firsov,“Electric Field Effect in Atomically Thin Carbon Films” Science 22 Oct 2004:Vol. 306, Issue 5696, pp. 666-669
[32] Meryl D. Stoller, Sungjin Park, Yanwu Zhu, Jinho An and Rodney S. Ruoff,“Graphene-Based Ultracapacitors” Nano Lett., 2008, 8 (10), pp 3498–3502
[33] Yenny Hernandez, Valeria Nicolosi, Mustafa Lotya, Fiona M. Blighe, Zhenyu Sun, Sukanta De, I. T. McGovern, Brendan Holland, Michele Byrne, Yurii K. Gun'Ko2, John J. Boland, Peter Niraj, Georg Duesberg, Satheesh Krishnamurthy, Robbie Goodhue, John Hutchison, Vittorio Scardaci, Andrea C. Ferrari & Jonathan N. Coleman,“High-yield production of graphene by liquid-phase exfoliation of graphite” Nature Nanotechnology 3, 563 - 568 (2008)
[34] Zhengzong Sun,“Growth of graphene from solid carbon sources”Nature 468,549–552
[35] Mustafa Lotya, Yenny Hernandez, Paul J. King, Ronan J. Smith, Valeria Nicolosi, Lisa S. Karlsson, Fiona M. Blighe, Sukanta De, Zhiming Wang, I. T. McGovern, Georg S. Duesberg and Jonathan N. Coleman “Liquid phase production of graphene by exfoliation of graphite in surfactant/water solutions”. Journal of the American Chemical Society, 2009, 131.(10) p. 3611-3620.
[36] Andrea C. Ferrari & Denis M. Basko. “Raman spectroscopy as a tool for studying the properties of graphene”. Nature Nanotechnology 8, 235–246 (2013)
[37] Jeong-Yuan Hwang,Chun-Chiang Kuo,Li-Chyong Chen and Kuei-Hsien Chen, “Correlating defect density with carrier mobility in large-scaled graphene films: Raman spectral signatures for the estimation of defect density.”Nanotechnology, Volume 21, Number 46
[38] Cheng SH1, Yeh YC, Lu ML, Chen CW, Chen YF., “Enhancement of laser action in zno nanorods assisted by surface plasmon resonance of reduced graphene oxide nanoflakes.”, Opt Express. 2012 Nov 5;20 Suppl 6:A799-805
[39] Sung Won Hwang, Dong Hee Shin, Chang Oh Kim, Seung Hui Hong, Min Choul Kim, Jungkil Kim, Keun Yong Lim, Sung Kim, Suk-Ho Choi, Kwang Jun Ahn, Gunn Kim, Sung Hyun Sim, and Byung Hee Hong“Plasmon-Enhanced Ultraviolet Photoluminescence from Hybrid Structures of Graphene/ZnO Films”
Phys. Rev. Lett. 105, 127403 – Published 15 September 2010
[40] K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, H. L. Stormer,“Ultrahigh electron mobility in suspended graphene”Solid State Communications 146, 351-355 (2008)
[41] Y. KAWAKAMI , K. OMAE , A. KANETA , K. OKAMOTO , .“Radiative and nonradiative recombination processes in semiconductors.” phys. stat. sol. (a) 183, 41 (2001)
[42] Di Zhu, Jiuru xu,AN Noemaun.The origin of the high diode-ideality factors in GalnN/GaN multiple quantum well light-emitting diodeslJl.Applied Physics 200(8):081113.
[43] K. Mayes, A. Yasan, R. McClintock, D. Shiell, S. R. Darvish, P. Kung and M. Razeghi Meclintock. “High-power 280 nm AlGaN light-emitting diodes based on an asymmetric single-quantum well” Appl. Phys. Lett. 84, 1046 (2004)
[44] Di Zhu, Jiuru Xu, Ahmed N. Noemaun, Jong Kyu Kim, E. Fred Schubert, Mary H. Crawford and Danie D. Koleske. “The origin of the high diode-ideality factors in GalnN/GaN multiple quantum well light-emitting diodes”. Appl. Phys. Lett. 94, 081113 (2009)
40
[45] H wshim, Y K Kim, E-K Suh.Effects of ing depth for n-contact and current spreading layer in InGaN/GaN light emitting diodes Semicond. Sci. Technol(2004) 19:774-777.
[46] Hisashi Masui, Shuji Nakamura and Steven P. DenBaars, Steven P. DenBaars. “Technique to evaluate the diode ideality factor of light-emitting diodes”, Appl. Phys. Lett. 96, 073509 (2010)