研究生: |
吳佳緯 Wu, Chia-Wei |
---|---|
論文名稱: |
自動駕駛車輛之新興科技預測:以專利分析法探討 Forecasting Emerging Technologies of Autonomous Vehicles: Use of Patent Analysis |
指導教授: | 蘇友珊 |
學位類別: |
碩士 Master |
系所名稱: |
工業教育學系 Department of Industrial Education |
論文出版年: | 2019 |
畢業學年度: | 107 |
語文別: | 中文 |
論文頁數: | 157 |
中文關鍵詞: | 自動駕駛車輛 、專利分析 、生命週期理論 、羅吉斯成長模型 、費雪成長模型 |
英文關鍵詞: | Autonomous Vehicle, Patent Analysis, Life Cycle Theory, Logistic Growth Model, Fisher-Pry Growth Model |
DOI URL: | http://doi.org/10.6345/NTNU201900987 |
論文種類: | 學術論文 |
相關次數: | 點閱:228 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究以專利分析法與技術生命週期之角度探討自動駕駛車輛及其相關等11項重點技術之技術發展趨勢。使用關鍵字、國際專利分類號與核准專利之公告日期作為專利檢索策略。本研究透過專利件數分析探討自動駕駛車輛產業以及各項技術之整體發展趨勢。透過國際專利分類碼分析,探討自動駕駛車輛以及各項技術所偏重之類別為何。藉由公司別分析,了解投入研發自動駕駛車輛以及各項技術領域之廠商為何。本研究以自動駕駛車輛及11項重點技術之累積專利數量作為衡量技術績效之專利指標,以羅吉斯成長模型 (Logistic Growth Model) 描述其技術生命週期,並以費雪成長模型 (Fisher-Pry Growth Model) 衡量技術滲透比率。研究結果指出,自動駕駛車輛、主動車距控制巡航系統 (Adaptive Cruise Control, ACC)、動力系統 (Propulsion System)、轉向系統 (Steering System) 及穩定系統 (Stability System) 目前為技術生命週期中成長期之階段;車道維持系統 (Lane Keeping Assist System, LKAS)、盲點偵測系統 (Blind Spot Detection, BSD)、自動停車輔助系統 (Active Parking Assist, APA)、輪速感知系統 (Wheel Speed Sensor)、都會行車輔助系統 (Traffic Jam Assist)、警告系統 (Warning System) 與光達 (Light Detection and Ranging, LIDAR),目前皆為技術生命週期中成熟期之階段。
This study adopts patent analysis and life cycle perspectives to explore the technological trends of autonomous vehicles and 11 key technologies associated with autonomous vehicles. We use keywords, international patent classification, and the issue date of patents as a patent search strategy. The research explores the overall development trend of the autonomous vehicle industry and various technologies through the analysis of the number of patents. We explore the number of autonomous vehicles and various technical categories through international patent classification analysis. Through company analysis, this research analyzes the investment in the development of autonomous vehicles and manufacturers in various technical fields. The cumulative number of patents for autonomous vehicles and 11 key technologies are used as a measure of technical performance. The life cycle is described by the Logistic Growth Model and the technical penetration ratio is measured by the Fisher-Pry Growth Model. The results of this study indicate that autonomous vehicles, the Adaptive Cruise Control (ACC), the Propulsion System, the Steering System, and the Stability System are currently in the growth stage. Lane Keeping Assist System (LKAS), Blind Spot Detection (BSD), Active Parking Assist (APA), Wheel Speed Sensor, Traffic Jam Assist, Warning System and Light Detection and Ranging (LIDAR) are currently in maturity stage.
中文文獻
林翰言(2018)。2018 CES:Toyota 發表次世代 e-Palette Concept 共享電動概念車。小七車觀點。取自:https://www.7car.tw/articles/read/47010
徐凰殷 (2016)。先進駕駛輔助系統專利布局與技術發展之研究。國立臺灣科技大學專利研究所碩士學位論文。取自:http://ir.lib.ntust.edu.tw/handle/987654321/64729
陳志承 (2017)。自動駕駛關鍵技術之專利研究。交通大學理學院應用科技學程學位論文,1-69。
張寓順 (2017)。以專利分析法探討自動駕駛汽車產業的發展。國立臺灣科技大學高階科技研發碩士在職專班碩士論文。取自:http://ir.lib.ntust.edu.tw/handle/987654321/69253
張晉源、管中徽 (2018)。IPC 或 CPC? 美國專利分類系統的比較與分析。2018年中華民國科技管理學會年會暨論文研討會,義守大學。
經濟部智慧財產局(2018)。IPC國際專利分類查詢。經濟部智慧財產局,2018.01版。取自:https://www.tipo.gov.tw/sp.asp?xdurl=mp/lpipcFull.asp&version=201801&ctNode=7231&mp=1
楊安琪(2018)。CES 2018不只造車也要推平台服務,福特攜手 Postmates 用自駕車送快遞。科技新報。取自:https://technews.tw/2018/01/12/ford-partners-with-postmates-on-self-driving-delivery-service/
趙芸賞 (2018)。自動駕駛穩定系統專利分析與技術發展趨勢之研究。中 華大學科技管理學系碩士學位論文。取自:https://hdl.handle.net/11296/7wnga7
鍾俊元(2018)。從CES 2018看全球重要創新趨勢。產業情報網。取自:http://ieknet.iek.org.tw/iekppt/ppt_detail.aspx?actiontype=ppt&indu_idno=3&domain=66&sld_preid=5252
蘇若綺 (2014)。以專利分析法探討自動駕駛車之創新與應用—以 Google Self-driving Car 為例。交通大學管理學院科技管理學程學位論文,1-80。
英文文獻
Abernathy, W. J., & Utterback, J. M. (1978). Patterns of industrial innovation. Technology review, 80(7), 40-47.
Abraham, B. P., & Moitra, S. D. (2001). Innovation assessment through patent analysis. Technovation, 21(4), 245-252.
Agrawal, P. S. N., & Gupta, P. A. K. (2019). An enhancement to handle seatbelt fastening during driving by heartbeat sensor. Journal Current Science, 20(04).
Alismail, H., & Browning, B. (2015). Automatic calibration of spinning actuated lidar internal parameters. Journal of Field Robotics, 32(5), 723-747.
Allotta, B., Pugi, L., Bartolini, F., Ridolfi, A., Costanzi, R., Monni, N., & Gelli, J. (2015). Preliminary design and fast prototyping of an autonomous underwater vehicle propulsion system. Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment, 229(3), 248-272.
Anderson, J. M., Nidhi, K., Stanley, K. D., Sorensen, P., Samaras, C., & Oluwatola, O. A. (2014). Autonomous vehicle technology: A guide for policymakers. Rand Corporation.
Ang, B. W., & Ng, T. T. (1992). The use of growth curves in energy studies. Energy, 17(1), 25-36.
Archibugi, D., & Planta, M. (1996). Measuring technological change through patents and innovation surveys. Technovation, 16(9), 451-519.
Ardito, L., Petruzzelli, A. M., & Albino, V. (2016). Investigating the antecedents of general purpose technologies: A patent perspective in the green energy field. Journal of Engineering and Technology Management, 39, 81-100.
Ashton, W. B., & Sen, R. K. (1989). Using patent information in technology business planning—II. Research-Technology Management, 32(1), 36-42.
Bagloee, S. A., Tavana, M., Asadi, M., & Oliver, T. (2016). Autonomous vehicles: challenges, opportunities, and future implications for transportation policies. Journal of modern transportation, 24(4), 284-303.
Baldiwala, A. A., & Necsulescu, D. (2019). A Comprehensive Data Reduction Algorithm for Automotive Multiplexing. SAE International Journal of Passenger Cars-Electronic and Electrical Systems, 12(07-12-01-0002).
Basberg, B. L. (1987). Patents and the measurement of technological change: a survey of the literature. Research policy, 16(2-4), 131-141.
Basjaruddin, N. C., Saefudin, D., & Aryani, S. A. (2015, September). Lane Keeping Assist System based on fuzzy logic. In 2015 International Electronics Symposium (IES) (pp. 110-113). IEEE.
Bass, F. M. (1995). Empirical generalizations and marketing science: A personal view. Marketing Science, 14(3_supplement), G6-G19.
Baek, J. W., Lee, E., Park, M. R., & Seo, D. W. (2015, July). Mono-camera based side vehicle detection for blind spot detection systems. In 2015 Seventh International Conference on Ubiquitous and Future Networks (pp. 147-149). IEEE.
Beard, R. W., Kingston, D., Quigley, M., Snyder, D., Christiansen, R., Johnson, W., ... & Goodrich, M. (2005). Autonomous vehicle technologies for small fixed-wing UAVs. Journal of Aerospace Computing, Information, and Communication, 2(1), 92-108.
Bengler, K., Dietmayer, K., Farber, B., Maurer, M., Stiller, C., & Winner, H. (2014). Three decades of driver assistance systems: Review and future perspectives. IEEE Intelligent Transportation Systems Magazine, 6(4), 6-22.
Bercier, E., Louvat, B., Harant, O., Balit, E., Bouvattier, J., & Nacsa, L. (2019, May). Far-infrared thermal camera an effortless solution for improving ADAS detection robustness. In Autonomous Systems: Sensors, Processing, and Security for Vehicles and Infrastructure 2019 (Vol. 11009, p. 1100907). International Society for Optics and Photonics.
Berntorp, K. (2015). Joint wheel-slip and vehicle-motion estimation based on inertial, GPS, and wheel-speed sensors. IEEE Transactions on Control Systems Technology, 24(3), 1020-1027.
Bishop, R. (2005). Intelligent vehicle technology and trends. Artech House. INC, Norwood, MA, USA.
Blincoe, L. J., Miller, T. R., Zaloshnja, E., & Lawrence, B. A. (2015). The Economic and Societal Impact of Motor Vehicle Crashes, 2010.(Revised)(Report No. DOT HS 812 013). Washington, DC: National Highway Traffic Safety Administration.
Bodger, P. S., & Tay, H. S. (1987). Logistic and energy substitution models for electricity forecasting: a comparison using New Zealand consumption data. Technological Forecasting and Social Change, 31(1), 27-48.
Broggi, A., Cerri, P., Debattisti, S., Laghi, M. C., Medici, P., Molinari, D., ... & Prioletti, A. (2015). PROUD—Public road urban driverless-car test. IEEE Transactions on Intelligent Transportation Systems, 16(6), 3508-3519.
Broggi, A., Medici, P., Zani, P., Coati, A., & Panciroli, M. (2012). Autonomous vehicles control in the VisLab intercontinental autonomous challenge. Annual Reviews in Control, 36(1), 161-171.
Burns, L. D., Jordan, C. W., & Scarborough, B. A. (2013). Transforming personal mobility. Earth Institute. Columbia University.
Cetindamar, D., Phaal, R., & Probert, D. (2016). Technology management: activities and tools. Macmillan International Higher Education.
Chang, S. H., & Fan, C. Y. (2016). Identification of the technology life cycle of telematics: A patent-based analytical perspective. Technological Forecasting and Social Change, 105, 1-10.
Chen, C. T., & Chen, Y. S. (2009, October). Real-time approaching vehicle detection in blind-spot area. In 2009 12th international IEEE conference on intelligent transportation systems (pp. 1-6). IEEE.
Chen, T. D. (2015). Management of a shared, autonomous, electric vehicle fleet: vehicle choice, charging infrastructure & pricing strategies (Doctoral dissertation).
Chen, Y. H., Chen, C. Y., & Lee, S. C. (2011). Technology forecasting and patent strategy of hydrogen energy and fuel cell technologies. International Journal of Hydrogen Energy, 36(12), 6957-6969.
Cheng, S., Li, L., Guo, H. Q., Chen, Z. G., & Song, P. (2019). Longitudinal Collision Avoidance and Lateral Stability Adaptive Control System Based on MPC of Autonomous Vehicles. IEEE Transactions on Intelligent Transportation Systems.
Cho, Y., & Daim, T. (2016). OLED TV technology forecasting using technology mining and the Fisher-Pry diffusion model. foresight, 18(2), 117-137.
Cho, Y., Daim, T. U., & Sklar, P. (2015). Forecasting OLED TV technology using bibliometrics and Fisher-Pry diffusion model. In 2015 Portland International Conference on Management of Engineering and Technology (PICMET) (pp. 2167-2176). IEEE.
Choi, C., Kim, S., & Park, Y. (2007). A patent-based cross impact analysis for quantitative estimation of technological impact: The case of information and communication technology. Technological Forecasting and Social Change, 74(8), 1296-1314.
Choi, J., & Hwang, Y. S. (2014). Patent keyword network analysis for improving technology development efficiency. Technological Forecasting and Social Change, 83, 170-182.
Corredoira, R. A., & Banerjee, P. M. (2015). Measuring patent's influence on technological evolution: A study of knowledge spanning and subsequent inventive activity. Research Policy, 44(2), 508-521.
Dąbrowski, T., & Rosiński, A. (2018). Review of car operation safety system elements. In MATEC Web of Conferences (Vol. 182, p. 01017). EDP Sciences.
Daim, T. U., Rueda, G., Martin, H., & Gerdsri, P. (2006). Forecasting emerging technologies: Use of bibliometrics and patent analysis. Technological Forecasting and Social Change, 73(8), 981-1012.
Day George, S. (1981). The Product Life Cycle: Analysis and Application Issues. Journal of Marketing, 45, 60-67.
De Godoy Daiha, K., Angeli, R., de Oliveira, S. D., & Almeida, R. V. (2015). Are lipases still important biocatalysts? A study of scientific publications and patents for technological forecasting. PLoS One, 10(6), e0131624.
Dernis, H., & Guellec, D. (2000). Using patent counts for cross-country comparisons of technology output. STI-Science Technology Industry Review, (27), 129-146.
De Silva, V., Roche, J., & Kondoz, A. (2018). Fusion of LiDAR and camera sensor data for environment sensing in driverless vehicles.
Dogan, E., Deborne, R., Delhomme, P., Kemeny, A., & Jonville, P. (2014). Evaluating the shift of control between driver and vehicle at high automation at low speed: The role of anticipation. In Transport Research Arena (TRA) 5th Conference: Transport Solutions from Research to DeploymentEuropean CommissionConference of European Directors of Roads (CEDR) European Road Transport Research Advisory Council (ERTRAC) WATERBORNEᵀᴾEuropean Rail Research Advisory Council (ERRAC) Institut Francais des Sciences et Technologies des Transports, de l'Aménagement et des Réseaux (IFSTTAR) Ministère de l'Écologie, du Développement Durable et de l'Énergie.
Dresner, K., & Stone, P. (2004, July). Multiagent traffic management: A reservation-based intersection control mechanism. In Proceedings of the Third International Joint Conference on Autonomous Agents and Multiagent Systems-Volume 2 (pp. 530-537). IEEE Computer Society.
Dresner, K. M., & Stone, P. (2007, January). Sharing the Road: Autonomous Vehicles Meet Human Drivers. In IJCAI (Vol. 7, pp. 1263-1268).
Eichelberger, A. H., & McCartt, A. T. (2016). Toyota drivers' experiences with dynamic radar cruise control, pre-collision system, and lane-keeping assist. Journal of safety research, 56, 67-73.
Ernst, H. (1997). The use of patent data for technological forecasting: the diffusion of CNC-technology in the machine tool industry. Small business economics, 9(4), 361-381.
Ernst, H. (2001). Patent applications and subsequent changes of performance: evidence from time-series cross-section analyses on the firm level. Research Policy, 30(1), 143-157.
European Patent Office. (2018). Patents and self-driving vehicles. The inventions behind automated driving. European Patent Office. Retrieved from https://www.lemoci.com/wp-content/uploads/2018/11/OEB-EPO-Self-driving-vehicles-study.pdf
Fagnant, D. J., & Kockelman, K. (2013). Preparing a Nation for Autonomous Vehicles Eno Center for Transportation. Washington, DC.
Fagnant, D. J., & Kockelman, K. (2015). Preparing a nation for autonomous vehicles: opportunities, barriers and policy recommendations. Transportation Research Part A: Policy and Practice, 77, 167-181.
Fajardo, D., Au, T. C., Waller, S., Stone, P., & Yang, D. (2011). Automated intersection control: Performance of future innovation versus current traffic signal control. Transportation Research Record: Journal of the Transportation Research Board, 2259, 223-232.
Farmer, C. M. (2008). Crash avoidance potential of five vehicle technologies. Insurance Institute for highway safety.
Fenton, R. E., & Mayhan, R. J. (1991). Automated highway studies at the Ohio State University-an overview. IEEE transactions on Vehicular Technology, 40(1), 100-113.
Fernandes, P., & Nunes, U. (2012). Platooning with IVC-enabled autonomous vehicles: Strategies to mitigate communication delays, improve safety and traffic flow. IEEE Transactions on Intelligent Transportation Systems, 13(1), 91-106.
Ferreira, H., Almeida, C., Martins, A., Almeida, J., Dias, N., Dias, A., & Silva, E. (2009, May). Autonomous bathymetry for risk assessment with ROAZ robotic surface vehicle. In Oceans 2009-Europe (pp. 1-6). Ieee.
Fisher, A. (2013). Inside Google's Quest To Popularize Self-Driving Cars. Popular Science, 18, 2013-09.
Fisher, J. C., & Pry, R. H. (1971). A simple substitution model of technological change. Technological forecasting and social change, 3, 75-88.
Fleetwood, J. (2017). Public health, ethics, and autonomous vehicles. American journal of public health, 107(4), 532-537.
Gilbert, M., & Cordey-Hayes, M. (1996). Understanding the process of knowledge transfer to achieve successful technological innovation. Technovation, 16(6), 301-312.
Guerra, E. (2016). Planning for cars that drive themselves: Metropolitan planning organizations, regional transportation plans, and autonomous vehicles. Journal of Planning Education and Research, 36(2), 210-224.
Guo, C., Kidono, K., & Kojima, Y. (2015). Understanding surrounding vehicles in urban traffic scenarios based on a low-cost lane graph. In 2015 IEEE Intelligent Vehicles Symposium (IV) (pp. 511-518). IEEE.
Guo, Y., Huang, L., & Porter, A. L. (2010). The research profiling method applied to nano‐enhanced, thin‐film solar cells. R&d Management, 40(2), 195-208.
Hall, B.H., Griliches, Z. and Hausman, J(1986). Patent and R and D: Is there a lag?., International Economic Review, 27(2), pp. 265-283.
Han, J. H., & Park, C. H. (2019). Performance evaluation on GNSS, wheel speed sensor, yaw rate sensor, and gravity sensor integrated positioning algorithm for automotive navigation system. In E3S Web of Conferences (Vol. 94, p. 02003). EDP Sciences.
Hang, P., Chen, X., & Luo, F. (2019). LPV/H∞ CONTROLLER DESIGN FOR PATH TRACKING OF AUTONOMOUS GROUND VEHICLES THROUGH FOUR-WHEEL STEERING AND DIRECT YAW-MOMENT CONTROL. International Journal of Automotive Technology, 20(4), 679-691.
Harhoff, D., Narin, F., Scherer, F. M., & Vopel, K. (1999). Citation frequency and the value of patented inventions. Review of Economics and statistics, 81(3), 511-515.
Hayes, B. (2011). Leave the Driving to it. American Scientist, 99(5), 362.
Hoehener, D., Huang, G., & Del Vecchio, D. (2016). Design of a lane departure driver-assist system under safety specifications. In 2016 IEEE 55th Conference on Decision and Control (CDC) (pp. 2468-2474). IEEE.
Howard, D., & Dai, D. (2014). Public perceptions of self-driving cars: The case of Berkeley, California. In Transportation Research Board 93rd Annual Meeting (Vol. 14, No. 4502).
Huang, C., Notten, A., & Rasters, N. (2011). Nanoscience and technology publications and patents: a review of social science studies and search strategies. The Journal of Technology Transfer, 36(2), 145-172.
Ioannou, P. A., & Chien, C. C. (1993). Autonomous intelligent cruise control. IEEE Transactions on Vehicular technology, 42(4), 657-672.
Ioannou, P. (Ed.). (2013). Automated highway systems. Springer Science & Business Media.
Jermakian, J. S. (2011). Crash avoidance potential of four passenger vehicle technologies. Accident Analysis & Prevention, 43(3), 732-740.
Jha, S., Banerjee, S. S., Cyriac, J., Kalbarczyk, Z. T., & Iyer, R. K. (2018, June). Avfi: Fault injection for autonomous vehicles. In 2018 48th Annual IEEE/IFIP International Conference on Dependable Systems and Networks Workshops (DSN-W) (pp. 55-56). IEEE.
Jun, S., & Sung Park, S. (2013). Examining technological innovation of Apple using patent analysis. Industrial Management & Data Systems, 113(6), 890-907.
Kang, N., Feinberg, F. M., & Papalambros, P. Y. (2017). Autonomous electric vehicle sharing system design. Journal of Mechanical Design, 139(1), 011402.
Katare, D., & El-Sharkawy, M. (2018, December). Collision warning system: embedded enabled (RTMaps with NXP BLBX2). In 2018 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT) (pp. 1-6). IEEE.
Kim, D. K., & Park, S. C. (2018). Efficient Test Scenario Construction for a Wheel Speed Sensor. International Journal of Applied Engineering Research, 13(1), 528-533.
Kritayakirana, K., & Gerdes, J. C. (2012). Autonomous vehicle control at the limits of handling. International Journal of Vehicle Autonomous Systems, 10(4), 271-296.
Kwasnicki, W. (2013). Logistic growth of the global economy and competitiveness of nations. Technological Forecasting and Social Change, 80(1), 50-76.
Lanctot, R. (2017). Accelerating the future: The economic impact of the emerging passenger economy. Strategy analytics, 5.
Lari, A., Douma, F., & Onyiah, I. (2015). Self-driving vehicles and policy implications: current status of autonomous vehicle development and minnesota policy implications. Minn. JL Sci. & Tech., 16, 735.
Lee, H., Kim, D., & Yi, S. (2013). Horizontally progressive mirror for blind spot detection in automobiles. Optics letters, 38(3), 317-319.
Lee, S., Nam, Y., Lee, S., & Son, H. (2016). Determinants of ICT innovations: A cross-country empirical study. Technological Forecasting and Social Change, 110, 71-77.
Lillesand, T., Kiefer, R. W., & Chipman, J. (2014). Remote sensing and image interpretation. John Wiley & Sons.
Lin, B. F., Chan, Y. M., Fu, L. C., Hsiao, P. Y., Chuang, L. A., Huang, S. S., & Lo, M. F. (2012). Integrating appearance and edge features for sedan vehicle detection in the blind-spot area. IEEE Transactions on Intelligent Transportation Systems, 13(2), 737-747.
Little, A. D. (1981). The strategic management of technology. Arthur D. Little.
Liu, C. Y., & Wang, J. C. (2009). Forecasting the development of the biped robot walking technique in Japan through S-curve model analysis. Scientometrics, 82(1), 21-36.
Liu, M., Naoum-Sawaya, J., Gu, Y., Lecue, F., & Shorten, R. (2018). A Distributed Markovian Parking Assist System. IEEE Transactions on Intelligent Transportation Systems, (99), 1-11.
Liu, S. J., & Shyu, J. (1997). Strategic planning for technology development with patent analysis. International Journal of Technology Management, 13(5-6), 661-680.
Lüke, S., Fochler, O., Schaller, T., & Regensburger, U. (2014). Traffic-Jam Assistance and Automation. Handbook of Driver Assistance Systems: Basic Information, Components and Systems for Active Safety and Comfort, 1-13.
Mahajan, H. S., Bradley, T., & Pasricha, S. (2017). Application of systems theoretic process analysis to a lane keeping assist system. Reliability Engineering & System Safety, 167, 177-183.
Mahtout, I., Navas, F., Gonzalez, D., Milanés, V., & Nashashibi, F. (2018, November). Youla-Kucera Based Lateral Controller for Autonomous Vehicle. In 2018 21st International Conference on Intelligent Transportation Systems (ITSC) (pp. 3281-3286). IEEE.
Mammeri, A., Lu, G., & Boukerche, A. (2015, July). Design of lane keeping assist system for autonomous vehicles. In 2015 7th International Conference on New Technologies, Mobility and Security (NTMS) (pp. 1-5). IEEE.
Manley, J. E., Marsh, A., Cornforth, W., & Wiseman, C. (2000). Evolution of the autonomous surface craft AutoCat. In OCEANS 2000 MTS/IEEE Conference and Exhibition. Conference Proceedings (Cat. No. 00CH37158) (Vol. 1, pp. 403-408). IEEE.
Marino, R., Scalzi, S., & Netto, M. (2011). Nested PID steering control for lane keeping in autonomous vehicles. Control Engineering Practice, 19(12), 1459-1467.
Martinez, L., & Crist, P. (2015). Urban Mobility System Upgrade–How shared self-driving cars could change city traffic. In International Transport Forum, Paris.
Masmitja, I., Gonzalez, J., Galarza, C., Gomariz, S., Aguzzi, J., & del Rio, J. (2018). New vectorial propulsion system and trajectory control designs for improved AUV mission autonomy. Sensors, 18(4), 1241.
Meyer, P. S., Yung, J. W., & Ausubel, J. H. (1999). A primer on logistic growth and substitution: the mathematics of the Loglet Lab software. Technological forecasting and social change, 61(3), 247-271.
Midgley, D. F. (1981). Toward a theory of the product life cycle: explaining diversity. Journal of Marketing, 45(4), 109-115.
Möller, D. P., & Haas, R. E. (2019). Advanced Driver Assistance Systems and Autonomous Driving. In Guide to Automotive Connectivity and Cybersecurity (pp. 513-580). Springer, Cham.
Montemerlo, M., Becker, J., Bhat, S., Dahlkamp, H., Dolgov, D., Ettinger, S., ... & Johnston, D. (2008). Junior: The stanford entry in the urban challenge. Journal of field Robotics, 25(9), 569-597.
Morton, J. (2019). Level 1 Automation Gains Ground. Engineering and Mining Journal, 220(3), 26-31.
National Highway Traffic Safety Administration. (2012). 2010 motor vehicle crashes: Overview. US Department of Transportation, Washington, DC, Research Note DOT HS, 811, 552.
Nieto, M., Lopéz, F., & Cruz, F. (1998). Performance analysis of technology using the S curve model: the case of digital signal processing (DSP) technologies. Technovation, 18(6-7), 439-457.
Norton Rose Fulbright. (2016). Autonomous vehicles: The legal landscape in the US and Germany. Norton Rose Fulbright. Retrieved from https://www.nortonrosefulbright.com/en/knowledge/publications/d81f55e7/autonomous-vehicles-the-legal-landscape-in-the-us-and-germany.
Palmer, P. J., & Williams, D. J. (2000). An analysis of technology trends within the electronics industry. Microelectronics international, 17(1), 13-16.
Patent iNSIGHT Pro. (2016). Autonomous Car-Control Mechanism. Patent iNSIGHT Pro. Retrieved from http://www.patentinsightpro.com/techreports/0416/Autonomous%20Car-Control%20Mechanism.pdf
Pau, G. (2013). Quickly home please: How connected vehicles are revolutionizing road transportation. IEEE Internet Computing, 17(1), 80-83.
Pearl, R., & Slobodkin, L. (1976). The growth of populations. The Quarterly Review of Biology, 51, 6-24.
Pérez, J., Milanés, V., & Onieva, E. (2011). Cascade architecture for lateral control in autonomous vehicles. IEEE Transactions on Intelligent Transportation Systems, 12(1), 73-82.
Petruzzelli, A. M., Rotolo, D., & Albino, V. (2015). Determinants of patent citations in biotechnology: An analysis of patent influence across the industrial and organizational boundaries. Technological Forecasting and Social Change, 91, 208-221.
Pinandhito, M. R., Indriawati, K., & Harly, M. (2019, March). Active fault tolerant control design in regenerative anti-lock braking system of electric vehicle with sensor fault. In AIP Conference Proceedings (Vol. 2088, No. 1, p. 020024). AIP Publishing.
Ploeg, J., Serrarens, A. F., & Heijenk, G. J. (2011). Connect & Drive: design and evaluation of cooperative adaptive cruise control for congestion reduction. Journal of Modern Transportation, 19(3), 207-213.
Prinet, V., Wang, J., Lee, J., & Wettergreen, D. (2016, September). 3D road curb extraction from image sequence for automobile parking assist system. In 2016 IEEE International Conference on Image Processing (ICIP) (pp. 3847-3851). IEEE.
Ra, M., Jung, H. G., Suhr, J. K., & Kim, W. Y. (2018). Part-based vehicle detection in side-rectilinear images for blind-spot detection. Expert Systems with Applications, 101, 116-128.
Rasshofer, R. H., Spies, M., & Spies, H. (2011). Influences of weather phenomena on automotive laser radar systems. Advances in Radio Science, 9(B. 2), 49-60.
Rugraff, E. (2017). A patent analysis of foreign direct innovative R&D activities in central Europe: the czech case. International Journal of Innovation Management, 21(02), 1750013.
Savino, G., Pierini, M., & Fitzharris, M. (2019). Motorcycle active safety systems: assessment of the function and applicability using a population-based crash data set. Traffic injury prevention, 1-7.
Schmeitz, A. J. C., & Alirezaei, M. (2016). Analysis of wheel speed vibrations for road friction classification. Vehicle System Dynamics, 54(4), 492-509.
Sharma, A., Chaki, R., & Bhattacharya, U. (2011). Applications of wireless sensor network in Intelligent Traffic System: A review. In 2011 3rd International Conference on Electronics Computer Technology (Vol. 5, pp. 53-57). IEEE.
Sheikh, N., Gomez, F. A., Cho, Y., & Siddappa, J. (2011, July). Forecasting of advanced electronic packaging technologies using bibliometric analysis and Fisher-Pry diffusion model. In 2011 Proceedings of PICMET'11: Technology Management in the Energy Smart World (PICMET) (pp. 1-20). IEEE.
Song, Y., & Liao, C. (2016, July). Analysis and review of state-of-the-art automatic parking assist system. In 2016 IEEE International Conference on Vehicular Electronics and Safety (ICVES) (pp. 1-6). IEEE.
Sotelo, M. Á., Barriga, J., Fernández, D., Parra, I., Naranjo, J. E., Marrón, M., ... & Gavilán, M. (2007, February). Vision-based blind spot detection using optical flow. In International Conference on Computer Aided Systems Theory (pp. 1113-1118). Springer, Berlin, Heidelberg.
Sotelo, M. Á., & Barriga, J. (2008). Blind spot detection using vision for automotive applications. Journal of Zhejiang University-Science A, 9(10), 1369-1372.
Spieser, K., Treleaven, K., Zhang, R., Frazzoli, E., Morton, D., & Pavone, M. (2014). Toward a systematic approach to the design and evaluation of automated mobility-on-demand systems: A case study in Singapore. In Road vehicle automation (pp. 229-245). Springer, Cham.
Suhr, J. K., Jang, J., Min, D., & Jung, H. G. (2016). Sensor fusion-based low-cost vehicle localization system for complex urban environments. IEEE Transactions on Intelligent Transportation Systems, 18(5), 1078-1086.
Sun, T., Gong, X., Li, B., & Wu, J. (2019). A novel torque vectoring system for enhancing vehicle stability. International Journal of Vehicle Autonomous Systems, 14(3), 278-303.
Suominen, A., & Seppänen, M. (2014). Bibliometric data and actual development in technology life cycles: flaws in assumptions. Foresight, 16(1), 37-53.
Talebpour, A., & Mahmassani, H. S. (2016). Influence of connected and autonomous vehicles on traffic flow stability and throughput. Transportation Research Part C: Emerging Technologies, 71, 143-163.
Taylor, M., & Taylor, A. (2012). The technology life cycle: Conceptualization and managerial implications. International journal of production economics, 140(1), 541-553.
Teizer, J., Allread, B. S., & Mantripragada, U. (2010). Automating the blind spot measurement of construction equipment. Automation in Construction, 19(4), 491-501.
Trachtler, A. (2004). Integrated vehicle dynamics control using active brake, steering and suspension systems. International Journal of Vehicle Design, 36(1), 1-12.
Urmson, C., Anhalt, J., Bagnell, D., Baker, C., Bittner, R., Clark, M. N., ... & Gittleman, M. (2008). Autonomous driving in urban environments: Boss and the urban challenge. Journal of Field Robotics, 25(8), 425-466.
Venugopalan, S., & Rai, V. (2015). Topic based classification and pattern identification in patents. Technological Forecasting and Social Change, 94, 236-250.
Verhulst, P. F. (1838). Notice sur la loi que la population suit dans son accroissement. Corresp. Math. Phys., 10, 113-126.
Victor, N. M., & Ausubel, J. H. (2002). DRAMs as model organisms for study of technological evolution. Technological forecasting and social change, 69(3), 243-262.
Weber, M. (2014). Where to? a history of autonomous vehicles. Available at h ttp://www.computerhistory.org/atchm/where-to-a-history-of-autonomous-vehicles.
Weisswange, T. H., Rebhan, S., Bolder, B., Steinhardt, N. A., Joublin, F., Schmuedderich, J., & Goerick, C. (2019). Intelligent traffic flow assist: Optimized highway driving using conditional behavior prediction. IEEE Intelligent Transportation Systems Magazine.
Werker, C. (2003). Innovation, market performance, and competition: lessons from a product life cycle model. Technovation, 23(4), 281-290.
Whaling, C. L. (1996). Technological innovation and the US banking industry: innovation in the US retail and wholesale banking sectors. Technology in society, 18(4), 477-501.
Wiatr, M. J. (2018). Probabilistic analysis of the Autonomous Emergency Braking systems with the Monte Carlo method (Doctoral dissertation, Instytut Techniki Lotniczej i Mechaniki Stosowanej).
World Intellectual Property Organization (2019). IPC Publication. World Intellectual Property Organization. Retrieved from https://www.wipo.int/classifications/ipc/ipcpub/?notion=scheme&version=20190101&symbol=none&menulang=en&lang=en&viewmode=f&fipcpc=no&showdelet-ed=yes&indexes=no&headings=yes¬es=yes&direction=o2n&initial=A&cwid=none&tree=no&searchmode=smart
Yang, Y., & Williams, E. (2009). Logistic model-based forecast of sales and generation of obsolete computers in the US. Technological Forecasting and Social Change, 76(8), 1105-1114.
Yoon, J., Seo, W., Coh, B. Y., Song, I., & Lee, J. M. (2017). Identifying product opportunities using collaborative filtering-based patent analysis. Computers & Industrial Engineering, 107, 376-387.
Yudelson, J. (2005). Predicting the Growth of Green Buildings using ‘‘Diffusion of Innovation’’Theory. Tucson, AZ: Yudelson Associates.
Yu, H., & Fan, D. (2012). Man-made boards technology trends based on TRIZ evolution theory. Physics Procedia, 33, 221-227.
Zhang, C., Hu, J., Qiu, J., Yang, W., Sun, H., & Chen, Q. (2019). A Novel Fuzzy Observer-Based Steering Control Approach for Path Tracking in Autonomous Vehicles. IEEE Transactions on Fuzzy Systems, 27(2), 278-290.
Zhang, X., & Khan, M. M. (2019). Principles of Intelligent Automobiles. Springer.
Zhao, Y., Bai, L., Lyu, Y., & Huang, X. (2019). Camera-Based Blind Spot Detection with a General Purpose Lightweight Neural Network. Electronics, 8(2), 233.
Zhou, X., Porter, A., Robinson, D. K., & Guo, Y. (2013, July). Analyzing research publication patterns to gauge future innovation pathways for nano-enabled drug delivery. In 2013 Proceedings of PICMET'13: Technology Management in the IT-Driven Services (PICMET) (pp. 2188-2199). IEEE.