簡易檢索 / 詳目顯示

研究生: 黃信軒
Huang, Hsin-Hsuan
論文名稱: 4-氯苯乙烯之第一電子激發態暨離子態振動光譜研究
two-color resonant two-photon ionization and mass-analyzed threshold ionization spectroscopy of 4-chlorostyrene
指導教授: 曾文碧
Tzeng, Wen-Bih
林振煌
Lin, Cheng-Huang
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 140
中文關鍵詞: 4-氯苯乙烯質量解析臨界游離光譜術離子態光譜
英文關鍵詞: 4-chlorostyrene, mass-analyzed threshold ionization spectroscopy, ionization spectroscopy
DOI URL: https://doi.org/10.6345/NTNU202204580
論文種類: 學術論文
相關次數: 點閱:200下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 我們應用高解析度共振雙光子游離與質量解析臨界游離光譜術來記錄4-氯苯乙烯的第一電子激發態暨離子態光譜,精準地量測電子躍遷能(E1)和游離能(IE),以及這個分子的活化振動,用以討論分子特性。
    由實驗測得4-氯苯乙烯的E1和絕熱IE分別為33977  2及67972  5 cm-1,由於目前的儀器解析度極限,35Cl與37Cl的4-氯苯乙烯同位素異構物具有相同的E1和絕熱IE。由於兩倍的第一電子躍遷能(E1)稍小絕熱IE,我們必須利用雙色共振雙光子游離技術才能測得正確的E1和第一電子激發態光譜。
    比較4-氯苯乙烯與氯苯、苯乙烯及苯的實驗的數據,我們發現在絕熱游離能存在添加規則(additivity rule),也意味著4-氯苯乙烯分子內的乙烯和氯取代基之間的作用力是微弱的。此外,我們也利用從頭計算法(ab inito)及密度泛函理論計算與實驗結果對照,以利合理的解釋我們取得的實驗數據。

    關鍵詞 : 4-氯苯乙烯, 質量解析臨界游離光譜術, 離子態光譜

    We applied the resonant two-photon ionization and mass-analyzed threshold ionization techniques to record the vibronic and cation spectra of 4-chlorostyrene to get the precise S1 ← S0 excitation energy (E1), adiabatic ionization energy (IE) and vibrational frequency to investigate ther molecular properties. The band origins of E1 of 35Cl-4-Chlorostyrene and 37Cl-4-chlorostyrene both appear at 33977 ± 2 cm-1. The mass-analyzed threshold ionization (MATI) spectra give the IE of 67972 ± 5 cm-1 for both isotopologues. Because the E1 is smaller than one half of the IE, we used the two-color resonant two-photon ionization (2C-R2PI) technique to measured the E1 and the vibronic spectrum. Comparing the E1‘s and IEs of 4-chlorostyrene, chlorobenzene, and styrene we have found an additivity rule which implies weak interactions among the Cl and vinyl substituents. We have also performed the ab initio and density functional theory calculations which help us in spectral assignment and support our experimental findings.

    Keyword : 4-chlorostyrene, mass-analyzed threshold ionization spectroscopy, ionization spectroscopy

    目錄 謝誌....................................................1 中文摘要................................................2 英文摘要................................................3 目錄....................................................4 圖目錄..................................................7 表目錄.................................................10 第一章 緒論.............................................11 1-1. 簡介...........................................11 1-2. 研究目的.......................................15 第二章 光譜技術.........................................17 2-1. 單色共振雙光子游離技術(1C-R2PI)....................17 2-2. 雙色共振雙光子游離技術(2C-R2PI)....................19 2-3. 質量解析臨界游離光譜技術(MATI).....................21 第三章 儀器部份.........................................31 3-1. 真空系統.........................................31 a. 束源氣室............................................34 b. 分子與雷射作用區.....................................38 c. 飛行導管............................................40 d. 離子偵測區..........................................41 3-2. 雷射系統.........................................45 a. 固態銣釔鋁石榴石雷射(Nd:YAG laser)...................45 b. 染料雷射(Dye Laser).................................49 3-3. 同步與訊號收集....................................56 第四章 實驗過程.........................................60 4-1. 實驗前準備........................................60 4-2. 實驗期間.........................................63 第五章 理論計算及光譜分析................................73 5-1. 概論.............................................73 5-2. 基底函數組.......................................84 5-3. 同位素分子的計算..................................90 5-4. 光譜判定.........................................91 第六章 實驗結果.........................................98 6-1. 質譜.............................................98 6-2. 第一電子激發態振動光譜............................100 6-3. 光游離效率曲線...................................106 6-4. 質量解析臨界游離光譜..............................108 第七章 結果討論........................................111 7-1. 電子躍遷能量及游離能..............................111 7-2. 分子構型與分子振動................................119 第八章 結論...........................................125 第九章 參考文獻.......................................127 圖目錄 圖一、4-氯苯乙烯結構圖...................................16 圖二、1C-R2PI游離機制示意圖..............................18 圖三、2C-R2PI游離機制示意圖..............................20 圖四、2C-R2PI測量游離能..................................20 圖五、質量解析臨界游離光譜法作用機制示意圖..................22 圖六、MATI光譜技術實驗操作程式示意圖......................23 圖七、雷德堡態分子軌道示意圖..............................25 圖八、雷德堡序列.........................................27 圖九、遲滯電場造成游離能下降..............................29 圖十、高主量子數雷德堡態和零動能態示意圖...................30 圖十一、實驗裝置示意圖...................................33 圖十二、飛行時間質譜儀內部構造圖..........................33 圖十三、脈衝閥剖面結構...................................36 圖十四、MCP剖面結構......................................44 圖十五、Spectra-Physics LAB-150染料雷射結構圖............46 圖十六、銣梨子(Nd3+)能階圖...............................48 圖十七、Lambda Physik Scanmate UV染料雷射內部光路圖.......52 圖十八、雷射一(Laser 1)外部光路行進路線圖.................53 圖十九、雷射二(Laser 2)外部光路行進路線圖.................53 圖二十、R590染料分子結構及示意圖..........................54 圖二十一、R610染料分子結構及示意圖........................55 圖二十二、延遲/脈衝產生器DG-535 之G1、G2與實驗儀器連接.....58 圖二十三、DG-535延遲時間示意圖...........................59 圖二十四、4-氯苯乙烯分子之吸收能量推測流程圖...............62 圖二十五、4-氯乙烯的1C-R2PI實驗記錄......................65 圖二十六、質譜轉光譜示意圖...............................66 圖二十七、4-氯乙烯的2C-R2PI實驗記錄......................68 圖二十八、4-氯乙烯的PIE curve實驗記錄....................69 圖二十九、4-氯苯乙烯的2C-R2PI實驗記錄....................71 圖三十、4-氯苯乙烯的MATI實驗記錄.........................72 圖三十一、4-氯苯乙烯各個原子標號順序......................74 圖三十二、位能曲面圖....................................76 圖三十三、四項參數......................................76 圖三十四、計算分子零點能.................................77 圖三十五、利用數個GTO函數模擬STO函數示意圖................85 圖三十六、同位素的計算..................................90 圖三十七、4-氯苯乙烯110的振動模式........................92 圖三十八、苯環的三十種分子振動模式........................94 圖三十九、取代基分別為一輕一重且為對位的苯環分子各振動頻率 的範圍.................................................95 圖四十、(a) 1bin = 40 ns, (b) 1bin = 5 ns,4-氯苯乙烯在第一道雷射波長 294.32 nm及第二道雷射波長 293.91 nm得到的質譜 ......................................................99 圖四十一、4-氯苯乙烯藉由單色共振雙光子游離法所得的振動光譜圖 .....................................................102 圖四十二、4-氯苯乙烯藉由雙色共振雙光子游離法所得的振動光譜圖 .....................................................103 圖四十三、4-氯苯乙烯於第一電子激發態振動模式,白點為碳、紅點為氯、藍點為氫、黑點為位移位置............................105 圖四十四、4-氯苯乙烯的光游離效率曲線.....................107 圖四十五、4-氯苯乙烯的質量解析臨界游離光譜圖,以S1000 (33 977 cm-1)為中間態.................................110 圖四十六、4-氯苯乙烯(a)1C-R2PI (b)2C-P2PI..............117 圖四十七、4-氯苯乙烯1C-R2PI實驗能階示意圖................118 圖四十八、以B3LYP方法預測4-氯苯乙烯的電子雲分佈示意圖.....122 表目錄 表一、理論計算方法......................................78 表二、4-氯苯乙烯在S0、S1、及D0的振動頻率、理論計算 B3LYP/6-311++G(d,p)、光譜判定及運動模式描述..............96 表三、35Cl及37Cl-4-氯苯乙烯的振動光譜中所觀察到的譜峰頻率a 、理論計算數值b、光譜指派及運動模式概述c..................104 表四、4-氯苯乙烯實驗測量值E1及IE與不同計算方法結果比較.....112 表五、4-氯苯乙烯及其他相關分子的第一電子激發態躍遷能量(E1)、游離能(IE)和相對於苯的能量位移............................115 表六、4-氯苯乙烯及其他相關分子的第一電子激發態躍遷能量(E1)、游離能(IE)和相對於苯乙烯的能量位移........................115 表七、理論計算(HF、B3PW91及B3LYP)得到4-氯苯乙烯碳碳鍵長變 化及結節點數...........................................121

    [1] M. Schmitt, U. Henrichs, H. Mulller, K. Kleinermanns, J. Chem. Phys. 103 (1995) 9918.
    (Intermolecular vibrations of the phenol dimer revealed by spectral hole burning and dispersed fluorescence spectroscopy)
    [2] R.J. Bouwens, J.A. Hammerschmidt, M.M. Grzeskowiak, T.A. Stegink, P.M. Yorba, W.F. Polik, J. Chem. Phys. 104 (1996) 460.
    (Pure vibrational spectroscopy of S 0 formaldehyde by dispersed fluorescence)
    [3] A.M. Ellis, E.S.J. Robles, T.A. Miller, Chem. Phys. Lett. 201 (1993) 132.
    (Dispersed fluorescence spectroscopic study of the ground
    electronic state of silver trimer)
    [4] T.G. Dietz, M.A. Duncan, M.G. Liveman, R.E. Smalley, J. Chem. Phys. 73 (1980) 4816.
    (Resonance enhanced two‐photon ionization studies in a supersonic
    molecular beam: Bromobenzene and iodobenzene)
    [5] B.C. Giordano, L. Jin, A.J. Couch, J.P. Ferance, J.P. Landers, Anal. Chem. 76 (2004) 4705.
    (Microchip laser-induced fluorescence detection of proteins at
    submicrogram per milliliter levels mediated by dynamic labeling
    under pseudonative conditions)
    [6] M. Takayanagi, D. Negishi, Y. Skurai, J. Phys. Chem. A 106 (2002) 7690.
    (Torsional potential of methyl group in m-tolunitrile-H2O and
    m-tolunitrile-N2O complexes studied by laser-induced
    fluorescence and hole-burning spectroscopies)
    [7] P.B. McKibbin, K. Otsuka, S. Terabe, Anal. Chem. 74 (2002) 3736.
    (On-line focusing of flavin derivatives using dynamic pH junction-sweeping capillary electrophoresis with laser-induced fluorescence detection)
    [8] H. Wang, J. Xing, W. Tan, M. Lam, T. Carnelley, M. Weinfeld, X.C. Le, Anal. Chem. 74 (2002) 3714.
    (Binding stoichiometry of DNA adducts with antibody studied by
    capillary electrophoresis and laser-induced fluorescence)
    [9] A. Nakajima, M. Hirano, R. Hasumi, K. Kaya, H. Watanabe, C.C. Carter, J.M. Williamson, T.A. Miller, J. Phys. Chem. A 101 (1997) 392.
    (High-Resolution Laser-Induced Fluorescence Spectra of
    7-Azaindole−Water Complexes and 7-Azaindole Dimer)
    [10] S.V. Rahavendran, H.T. Karnes, Anal. Chem. 68 (1996) 3763.
    (Application of rhodamine 800 for reversed phase liquid
    chromatographic detection using visible diode laser-Induced
    fluorescence)
    [11] D.E. Powers, J.B. Hopkins, R.E. Smally, J. Chem. Phys. 72 (1980) 5721.
    (Vibrational relaxation in jet‐cooled p a r a‐alkylanilines)
    [12] K. Watanabe, J. Chem. Phys. 22 (1954) 1564.
    (Photoionization and total absorption cross section of gases. I.
    ionization potentials of several molecules. cross sections of NH3
    and NO)
    [13] C. Nordling, E. Sokolowski, K. Siegbahn, Precision method for obtaining absolute values of atomic binding energies, Phys. Rev. 105 (1957) 1676-1677.
    (Precision Method for Obtaining Absolute Values of Atomic Binding
    Energies)
    [14] S. HagstrӦm, C.Nordling, K.Siegbahn, Phys. Lett. 9 (1964) 235-236.
    (Electron spectroscopy for chemical analysis)
    [15] D.W. Turner, M.I. Al Joboury, J. Chem. Phys. 37 (1962) 3007.
    (Determination of Ionization Potentials by Photoelectron Energy
    Measurement)
    [16] G.C. King, A.J. Yencha, M.C.A. Lopes, J. Electron Spectrosc. 17 (1999) 37.
    (Photo-double ionization of deuterium chloride studied by threshold
    photoelectrons coincidence spectroscopy)
    [17] K. Yosida, K. Suzuki, S. Ishiuchi, M. Sakai, M. Fujii, Caroline E. H. Dessent, K. Müller-Dethlefs Phys. Chem. Chem. Phys 4 (2002) 2534-2538.
    (The PFI-ZEKE photoelectron spectrum of m-fluorophenol and its aqueous complexes: Comparing intermolecular vibrations in rotational isomers)
    [18] K. Muller-Dethlefs, M. Sander, E.W. Schlag, Chem. Phys. Lett. 112 (1984) 291.
    (Two-colour photoionization resonance spectroscopy of NO:
    Complete separation of rotational levels of NO+ at the ionization
    Threshold)
    [19] L.A. Chewter, M. Sander, K. Muller-Dethlefs, E.W. Schlag, J. Chem. Phys. 86 (1987) 4737.
    (High resolution zero kinetic energy photoelectron spectroscopy of benzene and determination of the ionization potential)
    [20] E.W. Schlag, ZEKE Spectroscopy, Cambridge University Press, Cambridge, (1998).
    [21] L. Zhu, P.M. Johnson, J. Chem. Phys. 94 (1991) 5769.
    (Mass analyzed threshold ionization spectroscopy)
    [22] S. Ketkov, N. Isachenkov, E. Rychagova, W.B. Tzeng, Dalton Trans. 43 (2014) 17703-17711.
    (Electronic excited states of chromium and vanadium bisarene complexes revisited: interpretation of the absorption spectra on the basis of TD-DFT calculations)
    [23] S.Y. Ketkov, G.V. Markin, S.Y. Tzeng, W.B. Tzeng, Chem. Eur. J. 22 (2016) 4690-4694.
    (Fine substituent effects in sandwich complexes: first threshold
    ionization study of monosubstituted chromium bisarene compounds)
    [24] J.L. Lin, W.B. Tzeng, Appl Spectrosc.57 (2003) 1178-1182.
    (Identification of impurities in phenylacetylene by species-selected
    mass-analyzed threshold ionization spectroscopy)
    [25] P.Y. Wu, S.Y. Tzeng, Y.C. Hsu, W.B. Tzeng, J. Mol. Spectrosc. (submitted for publication).
    [26] P.Y. Wu, W.B. Tzeng, J. Mol. Spectrosc. 316 (2015) 72-78.
    (Selected cis- and trans-3-fluorostyrene rotamers studied by
    two-color resonant two-photon mass-analyzed threshold ionization
    spectroscopy)
    [27] S. Georgiev, H.J. Neusser, J. Chem. Phys. 120 (2004) 8015.
    (Mass analyzed threshold ionization spectroscopy of
    p-fluorostyrene)
    [28] C. Dong, L. Zhang, S. Liu, L. Hu, M. Cheng, Y. Du , Q. Zhu, C. Zhang, JMS. 292 (2013) 35-46.
    (REMPI and MATI spectroscopic study of selected cis and trans 3-chlorostyrene rotamers)
    [29] G. Varsanyi, S. Szoke, Vibrational Spectra of Benzene Derivatives, Academic Press, London, 1969
    [30] O. Dopferand, K. Muller-Dethlefs, J. Chem. Phys. 101 (1994) 8508.
    (S 1excitation and zero kinetic energy spectra of partly deuterated
    1:1 phenol–water complexes)
    [31] S.C. Yang, W.B. Tzeng, J. Mol. Spectrosc. 269 (2011) 49-55.
    (Mass-analyzed threshold ionization spectroscopy of
    deuterium-substituted isotopomers of o-fluoroaniline and
    m-fluoroaniline cations)
    [32] W.C. Huang, W.L. Yeh, W.B. Tzeng, J. Mol. Spectrosc. 269 (2011) 248-253.
    ( Vibronic and cation spectroscopy of m-chloroaniline)
    [33] K.S. Shiung, D.Yua, H.C. Huang, W.B. Tzeng, J. Mol. Spectrosc. 274 (2012) 43-47.
    (Rotamers of m-fluoroanisole studied by two-color resonant
    two-photon mass-analyzed threshold ionization spectroscopy)
    [34] Y.J. Su, W.B. Tzeng, Chem. Phys. Lett. 543 (2012) 19-22.
    (Vibronic and cation spectroscopy of p-ethynylaniline)
    [35] K.W. Lo, W.B. Tzeng, J. Mol. Spectrosc. 288 (2013) 1-6.
    ( 3-Chloro-4-fluoroaniline studied by resonant two-photo ionization
    and mass-analyzed threshold ionization spectroscopy)
    [36] Y.H. Huang, W.C. Huang, W.B. Tzeng, Chem. Phys. Lett. 595-596 (2014) 73-76.
    (4-Chloro-3-fluoroaniline studied by resonant two-photo ionization
    and mass-analyzed threshold ionization spectroscopy)
    [37] C. Li, M. Pradhan, W.B. Tzeng, Chem. Phys. Lett. 411 (2005) 506-510.
    (Mass analyzed threshold ionization spectroscopy of
    p-cyanophenol cation and the CN substitution effect)
    [38] J.L. Lin, Yi Chang Li, W.B. Tzeng, Chem. Phys. 334 (2007) 189-195.
    (Mass analyzed threshold ionization spectroscopy of aza-aromatic
    bicyclic molecules: Benzimidazole and benzotriazole)
    [39] S.Y. Tzeng, J.Y. Wu, S. Zhang, W.B. Tzeng, J. Mol. Spectrosc. 281 (2012) 40-46.
    (Resonant two-photon mass-analyzed threshold ionization spectroscopy of 1-fluoronaphthalene and 2-fluoronaphthalene)
    [40] V. Shivatarea, S.Y. Tzeng, W.B. Tzeng, Chem. Phys. Lett. 558 (2013) 20-24.
    (Active vibrations of 1-cyanonaphthalene cation studied by
    mass-analyzed threshold ionization spectroscopy)
    [41] V. Shivatare , W.B. Tzeng, J. Phys. Chem. A 118 (2014) 8277-8286.
    (Studies of structural isomers o-, m-, and p-fluorophenylacetylene by
    two-color resonant two-photon mass-analyzed threshold ionization
    spectroscopy
    [42] C. Qin , S.Y. Tzeng , B. Zhang , W.B. Tzeng, Journal of Photochemistry and Photobiology A: Chemistry 220 (2011) 139-144.
    (Active vibrations of indene cation studied by mass-analyzed
    threshold ionization spectroscopy)
    [43] K.S. Shiunga, D.Yua, S.Y. Tzenga, W.B. Tzeng, Chem. Phys. Lett. 524 (2012) 38-41.
    (Cation spectroscopy of o-fluoroanisole and p-fluoroanisole by
    two-color resonant two-photon mass-analyzed threshold ionization)
    [44] W.C. Huang, Y.C. Lin, W.B. Tzeng, Chem. Phys. Lett. 551 (2012) 50-53.
    (Mass-analyzed threshold ionization spectroscopy of 2,6-dimethylaniline, 2,6-dimethylaniline-NHD, and 2,6-dimethylaniline-ND2)
    [45] S.C. Yang, S.W. Huang, W.B. Tzeng, J. Phys. Chem, 114 (2010) 11144-11152.
    (Rotamers of m-chloroanisole studied by two-color resonant
    two-photon mass-analyzed threshold ionization spectroscopy)
    [46] H. Ikoma, K. Takazawa, Y. Emura, S. Ikeda, H. Abe, H. Hayashi, M. Fujii, J. Chem. Phys. 105 (1996) 10201.
    (Internal rotation of methyl group in o‐ and m‐toluidine cations as
    studied by pulsed field ionization–zero kinetic energy spectroscopy)
    [47] F. Merk, Annu. Rev. Phys. Chem. 48 (1997) 675.
    (mplecules in high rydberg states)
    [48] Andrewheld and Edward W. Schlag, Kluwer Academic Publishers. (1991) 249.
    [49] M.C.R. Cockett, Chem. Soc. Rev. 34 (2005) 935.
    (Photoelectron spectroscopy without photoelectrons: twenty years of
    ZEKE spectroscopy)
    [50] K. Muller-Dethlefs, E.W. Schlag, Angew. Chem. Int. Ed. Engl. 37 (1998) 346-1374.
    (Chemical applications of zero kinetic energy(ZEKE) photoelectron
    Spectroscopy)
    [51] W.A. Chupka, J. Chem. Phys. 98 (1993) 4520.
    (Factors affecting lifetimes and resolution of Rydberg states observed
    in zero‐electron‐kinetic‐energy spectroscopy)
    [52] M.G.H. Boogaarts, I. Holleman, R.T. Jongma, D.H. Parker, G.Meijer, U. Even, Phys. 104 (1996) 4357-4364.
    (High Rydberg states of DABCO: Spectroscopy, ionization potential,
    and comparison with mass analyzed threshold ionization, J.Chem.)
    [53] J.H. Moore, C.C. Davis, M.A. Coplan, S.C. Greer, Building scientific appaeatus, University of Maryland, College Park, 2002
    [54] W.C. Wiley, I.H. Mclaren, Rev. Sci. Instrum. 26 (1955) 1150.
    (Time‐of‐Flight Mass Spectrometer with Improved Resolution)
    [55] User’s manual (Spectra-Physics LAB-150), Spectra-Physics,1335 terra bella avenue mountain View, 2003
    [56] User’s manual (Lambda Physik Scanmate), Lambda Physik USA, 3201 West Commerical Blvd, 2005
    [57] Exciton Laser Dyes 30 Years of Excellence and More Brilliant Than Ever. Exciton, PO Box 31126 Dayton, 1985
    [58] Lambda Physik, Wall Chart ,Göttingen-Grone, 1996
    [59] D.M. Guthals, J.W. Nibler, Opt. Commun. 29 (3), 322 (1979).
    (Tuning ranges of 355 nm pumped dyes from 410 to 715 nm)
    [60] C.A. Moore, C.D. Decker, J. Appl. Phys. 49 (1), 47 (1978).
    (Power‐scaling effects in dye lasers under high‐power laser
    excitation)
    [61] I.A. Stenhaouse, D. R. Williams, Appl. Spectrosc. 33 (2), 175 (1979).
    (Lasing characteristics of dyes transversely pumped by a pulsed, frequency doubled, Nd/YAG laser)
    [62] Q.H.F. Vrehen, Opt. Commun. 3 (3), 144 (1971).
    (Spectral distribution of the stimulated emission of a rhodamine B
    dye laser)
    [63] J.L. Lin, W.B. Tzeng, J. Chem. Phys. 113 (2000) 4109-4115.
    (Mass analyzed threshold ionization of the 35Cl and 37Cl isotopomers
    of p-chloroaniline)
    [64] J.L. Lin, W.B. Tzeng, Phys. Chem. Chem. Phys. 2 (2000) 3759-3763.
    (Ionization energy of o-fluoroaniline and vibrational levels of
    o-fluoroaniline cation determined by mass-analyzed threshold
    ionization spectroscopy)
    [65] B. Zhang, C. Li, H. Su, J.L. Lin, W.B. Tzeng, Chem. Phys. Lett. 390 (2004) 65-70.
    (Mass analyzed threshold ionization spectroscopy of p-fluorophenol
    and the p-fluoro substitution effect)
    [66] L. Yuan, C. Li, J.L. Lin, S.C. Yang, W.B. Tzeng, Chem. Phys. 323 (2006) 429-438.
    (Mass analyzed threshold ionization spectroscopy of o-fluorophenol
    and o-methoxyphenol cations and influence of the nature and relative
    location of substituents)
    [67] J. Huang, K. Huang, S. Liu, Q. Luo, W.B. Tzeng, J. Photochem. and Photobio. A 193 (2008) 245-253.
    (Vibrational spectra and theoretical calculations of p-chlorophenol in
    the electronically excited S1 and ionic ground D0 states)
    [68] C. Qin, S.Y. Tzeng, B. Zhang, W.B. Tzeng, Chem. Phys. Lett. 503 (2011) 25-28.
    (Selected cis- and trans-p-methoxystyrene rotamers studied by
    mass-analyzed threshold ionization spectroscopy)
    [69] W.C. Huang, P.S. Huang, C.H. Hu, W.B. Tzeng, Spectrochim. Acta A 93 (2012) 176-179.
    (Vibronic and cation spectroscopy of 2,4-difluoroaniline)
    [70] J.L. Lin, K.C. Lin, W.B. Tzeng, Appl. Spectrosc. 55 (2001) 120-124.
    (Species-selected mass analyzed threshold ionization spectra of
    m-fluoroaniline cation)
    [71] L.C.L. Huang, J.L. Lin, W.B. Tzeng, Chem. Phys. 261 (2000) 449-455.
    (Mass analyzed threshold ionization spectroscopy of
    4-aminobenzonitrile cation)
    [72] S.C. Yang, J.L. Lin, W.B. Tzeng, Chem. Phys. Lett. 362 (2002) 19-25.
    (Mass analyzed threshold ionization spectroscopy of p-ethylaniline
    cation: Alkyl chain effects on ionization and molecular vibration)
    [73] J. Lin, J.L. Lin, W.B. Tzeng, Chem. Phys. Lett. 370 (2003) 44-51.
    (Mass analyzed threshold ionization spectroscopy of
    p-methoxylaniline cation and influence of the OCH3 substituent)
    [74] R.G. Neuhauser, K. Siglow, H.J. Neusser, J. Chem. Phys. 106 (1997) 896.
    (High nn Rydberg spectroscopy of benzene: Dynamics, ionization
    energy and rotational constants of the cation)
    [75] T.G. Wright, S.I. Panov, T.A. Miller, J. Chem. Phys. 102 (1995) 4793.
    (Vibrational spectroscopy of the chlorobenzene cation using zero kinetic energy photoelectron spectroscopy)
    [76] J.L. Lin, S.C. Yang, Y.C. Yu ,W.B. Tzeng, Chem. Phys. Lett. 356 (2002) 267–276.
    (Mass analyzed threshold ionization of p-bromoaniline: Heavy atom effects on electronic transition, ionization, and molecular vibration)
    [77] J. Huang, J.L. Lin, W.B. Tzeng, Chem. Phys. Lett. 422 (2006) 271-275.
    (Mass analyzed threshold ionization spectroscopy of the 35Cl and
    37Cl isotopomers of p-chlorophenol and isotope effect)
    [78] Gaussian 09, Revision A.02,, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2009.
    [79] James B. Foresman, Exploring Chemistry with Electronic Structure Methods, Gaussian, Inc., 2nd Ed, 1996.
    [80] S.F. Boys, Proc. R. Soc. London, A 200 (1950) 542-554.
    (Electronic wavefunctions. I. A general method of calculation for
    stationary states of any molecular system)
    [81] J. L. Lin, R.H. Wu, W.B. Tzeng, Chem. Phys, 280 (2002) 191-203.
    (Mass analyzed threshold ionization spectroscopy of 3-aminopyridine cation and vicinal substitution effect)
    [82] J.L. Lin, R.H. Wu, W.B. Tzeng, Chem. Phys. Lett. 353 (2002) 55-62.
    (Mass analyzed threshold ionization spectroscopy of
    2-aminopyridine cation)
    [83] J.L. Lin, L.C.L. Huang, W.B. Tzeng, J. Phys. Chem. A 105 (2001) 11455-11461.
    (Mass-analyzed threshold ionization spectroscopy of the selected
    rotamers of hydroquinone and p-dimethoxybenzene cations)
    [84] J. Lin, J.L. Lin, W.B. Tzeng, Chem. Phys. 295 (2003) 97-107.
    (Mass analyzed threshold ionization spectroscopy
    of N-methylaniline and N-ethylaniline cations: Isotope
    effect on transition energy and large amplitude vibrations)
    [85] Y. Xie, H. Su, W.B. Tzeng, Chem. Phys. Lett. 394 (2004) 182-186.
    (Rotamers of m-aminophenol cation studied by mass analyzed
    threshold ionization spectroscopy and theoretical calculations)
    [86] G. Varsanyi, Assignments of Vibrational Spectra of Seven Hundred Benzene Derivatives, Wiley, New York, 1974.
    [87] W.B. Tzeng, K. Narayanan, Journal of Molecular Structure 482–483
    (1999) 315–322.
    (Vibronic features of p-ethylaniline, p-ethylaniline-NHD, and
    pethylaniline-ND2 by resonant two-photon ionization mass
    spectrometry)
    [88] W.B. Tzeng , K. Narayanan , J.L. Lin , C.C. Tung, Spectrochimica
    Acta Part A 55 (1999) 153–162.
    (Structures and vibrations of o-methylaniline in the S0 and S1 states
    studied by ab initio calculations and resonant two-photon ionization
    spectroscopy)
    [89] J.L. Lin, W.B. Tzeng, Chem. Phys. Lett. 380 (2003) 503-511
    (Mass analyzed threshold ionization spectroscopy of 7-azaindole
    cation)
    [90] J. Huang, K. Huang, S. Liu, Qiong Luo, W.B. Tzeng, J. Photochem.
    Photobio. A 188 (2007) 252-259.
    (Molecular Structures and Vibrations
    of cis and trans m-cresol in the electronically excited S1 and cationic
    D0 states)
    [91] W.B. Tzeng, J.L. Lin, J.Phys.Chem.A 103 (1999) 8612-8619.
    (Ionization energy of p-fluoroaniline and vibrational levels
    of p-fluoroaniline cation determined by mass-analyzed threshold
    ionization spectroscopy)
    [92] J.L. Lin, W.B. Tzeng, Chem. Phys. Lett. 377 (2003) 620-626.
    (Mass analyzed threshold ionization spectroscopy of 1-methylindoline cation)
    [93] R.H. Wu, J.L. Lin, J. Lin, S.C. Yang, W.
    B. Tzeng, J. Chem. Phys. 118 (2003) 4929-4937.
    (Mass analyzed threshold ionization spectroscopy of N-methylaniline, N-ethylaniline, and N,N-dimethylaniline
    cations: Influence of N-alkyl substitution on the ionization energy
    and molecular vibration)
    [94] J.L. Lin, J. Lin, R.H. Wu, W.B. Tzeng, J. Chem. Phys. 118 (2003)
    10034-10041.
    (Mass analyzed threshold ionization spectroscopy of indoline
    cation: Cyclization effect and large amplitude vibrations)
    [95] J. Lin, J.L. Lin, W.B. Tzeng, Chem. Phys. Lett. 371 (2003) 662-669.
    (Mass analyzed threshold ionization spectroscopy of N-deuterium
    substituted indoline cation: Isotope effect on the electronic transition
    , ionization and molecula vibration)

    [96] C. Li, H. Su, W.B. Tzeng, Chem. Phys. Lett. 410 (2005) 99-103.
    (Rotamers of p-methoxyphenol cation studied by mass-analyzed
    threshold ionization spectroscopy)
    [97] J. Huang, C. Li, W.B. Tzeng, Chem. Phys. Lett. 414 (2005) 276-281.
    (Mass analyzed threshold ionization
    spectroscopy of p-methylanisole cation and the substitution effect)
    [98] L. Yuan, C. Li, W.B. Tzeng, J. Phys. Chem.
    A. 109 (2005) 9481-9487.
    (Site-specific H/D exchange of p-methoxyphenol Studied by
    resonant two-photon ionization and mass-analyzed threshold
    ionization spectroscopy)
    [99] H. Su, M. Pradhan, W.B. Tzeng, Chem. Phys.
    Lett. 411 (2005) 86-90.
    (Mass analyzed threshold ionization spectroscopy of indazole cation)
    [100] C. Li, S.C. Yang, W.B. Tzeng, Chem. Phys. Lett. 421 (2006) 77-80.
    (Mass analyzed threshold ionization spectroscopy of
    methyl-p-aminobenzoate cation)
    [101] J. Huang, J.L. Lin, W.B. Tzeng, Spectrochim. Acta A 67 (2007)
    989-994.
    (Rotamers of m-cresol cations studied by mass analyzed threshold
    ionization spectroscopy)

    下載圖示
    QR CODE