研究生: |
黃盟元 Meng-Yuan Huang |
---|---|
論文名稱: |
Daphnephila 屬癭蚋蟲癭之生態生理特性研究 The Study on the Ecophysiological Characteristics of Galls Induced by Daphnephila Midges |
指導教授: |
張永達
Chang, Yung-Ta 楊棋明 Yang, Chi-Ming |
學位類別: |
博士 Doctor |
系所名稱: |
生命科學系 Department of Life Science |
論文出版年: | 2011 |
畢業學年度: | 99 |
語文別: | 英文 |
論文頁數: | 136 |
中文關鍵詞: | 蟲癭 、生態生理 、光合作用 、反射光譜 、抗氧化活性 |
英文關鍵詞: | gall, ecophysiology, photosynthesis, spectral reflectance, antioxidant activity |
論文種類: | 學術論文 |
相關次數: | 點閱:197 下載:11 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
造癭昆蟲會改變植物組織的生長與分化,產生的蟲癭可提供昆蟲營養及遮蔽,而造癭昆蟲也會造成植物組織內化學組成、色素蛋白複合體、光合作用效能等多方面的改變。本研究使用Daphnephila 屬之兩種癭蚋蟲癭,利用化學分析、氣體交換、葉綠素螢光、掃描式電子顯微鏡、共軛焦雷射掃描顯微鏡及反射光譜等,研究葉片癭蚋蟲癭和寄主植物的生態生理特性。結果顯示造癭昆蟲會改變葉片組織葉綠素的生合成及崩解途徑,由Chlide→ Phe→ Pchlide 改變為Chl→ Chlide→ Pchlide;在營養假說的基礎上,研究結果顯示蟲癭在寄主植物上可扮演基儲的角色;而反射光譜研究結果顯示,反射光譜指數與葉綠素螢光參數呈現正相關,反射光譜技術具有利用於蟲癭生態生理研究的潛力;由蟲癭及葉片抗氧化功能的分析結果顯示,蟲癭會提高抗氧化的能力來清除組織內增加的自由基。
Many insect groups induce plant galls – structures composed of plant tissue within which the insect feeds, which are distinguished from other insect-generated shelters by the fact that they involve active differentiation and growth of plant tissues. Multiple changes in response to gall inducers have been found in host plant tissues. In this study, two types of galls induced by two Daphnephila midge species were focused.
Chemical analysis, gas exchange, chlorophyll fluorescence, scanning electron microscopy, confocal laser-scanning microscopy and reflectance spectra were used to investigate the ecophysiological characteristics of leaf-derived cecidomyiid galls and their host leaves. The results showed that the insect induced galls derived from infected leaf altered the biosynthetic and degradative pathways of chlorophyll. Based on assumptions of source-sink hypothesis, it suggests that leaf-derived cecidomyiid galls play the role as novel sink in leaves. The data of spectral reflectance revealed the potential of utilizing it as a tool for studying the ecophysiology of galls. The results indicated that galls had abilities and functions to scavenge free radicals effectively for balancing the increase of free radicals in their bodies.
Aldea M, JG Hamilton, JP Resti, AR Zangerl, MR Berenbaum, TD Frank, EH DeLucia. 2006. Comparison of photosynthetic damage from arthropod herbivory and pathogen infection in understory hardwood saplings. Oecologia 149: 221-232.
Allison SD, JC Schultz. 2005. Biochemical responses of chestnut oak to a galling cyipid. J. Chem. Ecol. 31: 151- 166.
Davey MR, IS Curtis, GMA Gartland, JB Power. 1994. Agrobacterium induced crown gall and hairy root diseases: their biology and application to plant genetic engineering. Page 9-56 In MAJ Williams, ed. Plant Galls: Organisms, Interactions, Populations. Clarendon Press, Oxford, England.
Dorchin N, A Freidberg, O Mokady. 2004. Phylogeny of the Baldratiina(Diptera: Cecidomyiidae) inferred from morphological, ecological and molecular data sources, and evolutioxnary patterns in plant-galler relationships. Mol. Phylogenet. Evol. 30: 503-515
Dreger-Jauffret F, JD Shorthouse. 1992. Diversity of gall-inducing insects and their galls. Pages 8-33 In JD Shorthouse, O Rohfritsch,eds. Biology of Insect-Induced Galls. Oxford University Press,11 Oxford, England.
Fernandes GW, H Duarte, U Lüttge. 2003. Hypersensitivity of Fagus sylvatica L. against leaf galling insects. Trees 17: 407–411.
Govindarajan R, M Vijayakumar, P Pushpangadan. 2005. Antioxidant approach to disease management and the role of ‘Rasayana’ herbs of Ayurveda. J. of Ethnopharmacology 99: 165–178.
Harper LJ, K Schörogge, KY Lim, P Francis, CP Lichtenstein. 2004.Cynipid galls: insect-induced modifications of plant development create novel plant organs. Plant Cell and Environ. 27: 327–335
Hartley SE. 1998. The chemical composition of plant galls: are levels of nutrients and secondary compounds controlled by gall-former. Oecologia 113: 492-501.
Higton RN, DJ Mabberley. 1994. A willow gall from the galler’s point view. Page 301-312 In MAJ Williams, ed. Plant Galls: Organisms,Interactions, Populations. Clarendon Press, Oxford, England.
Höglund S, S Larsson, G Wingsle. 2005. Both hypersensitive and non-hypersensitive responses are associated with resistance in Salix viminalis against the gall midge Dasineura marginemtorquens. J Exp.Bot. 56: 3215–3222.
Hori K. 1992. Insect secretions and their effect on plant growth, with special reference to hemipterans. Page 157-179 In JD Shorthouse, O Rohfritsch, eds. Biology of Insect-Induced Galls. Oxford University Press, Oxford, England.
Huang MY, MM Yang, WN Jane, YT Chang, CM Yang. 2009. Insect-induced cecidomyiid galls deficient in light-harvesting protein complex II showing normal grana stacking. J Asia-Pac. Entomol. 12: 165–168.
Karban R, A A Agrawal. 2002. Herbivore offense. Annu. Rev. Ecol. Syst. 33:641-64.
Kaur G, M Athar, MS Alam. 2008. Quercus infectoria galls possess antioxidant activity and abrogates oxidative stress-induced functional alterations in murine macrophages. Chem. Biol. Interact. 171: 272–282.
Leitch IJ. 1994. Induction and development of the bean gall caused by Pontaniaproxima. Page 283-300 In MAJ Williams, ed. Plant Galls: Organisms, Interactions, Populations. Clarendon Press, Oxford, England.
Mapes CC, PJ Davies. 2001. Cytokinins in the ball gall of Solidago altissima and in the gall forming larvae of Eurosta solidaginis. New Phyto. 151: 203–212
Mapes CC, PJ Davies. 2001. Indole-3-acetic acid and ball gall development on Solidago altissima. New Phyto. 151: 195–202
McCalla DR, MK Genthe, W Howanitz. 1962. Chemical nature of an insect gall growth factor. Plant Physiol. 37: 98- 103.
Meyer J. 1987. Plant galls and gall inducers. Gebruder Borntraeger, Berlin, Stuttgart.
Mittapalli O, JJ Neal, RH Shukle. 2007. Antioxidant defense response in a galling insect. Proc. Natl. Acad. Sci. USA 104: 1889–1894.
Motta LB, JE Kraus, A Salatino, MLF Salatino. 2005. Distribution of metabolites in galled and non-galled foliar tissues of Tibouchina pulchra. Biochem. Systematics Ecol. 33: 971- 981.
Piubelli GC, CB Hoffmann-Campo, IC Arruda, JC Franchini, FM Lara. 2003. Flavonoid increase in soybean as a response to Nezara viridula injury and its effect on insect-feeding preference. J. Chem. Ecol. 29: 1223-1233.
Price PW, GL Waring, GW Frenandes. 1986. Hypotheses on the adaptive nature of galls. Proc. Entomol. Soc. Wash. 88: 361-363.
Price PW, GW Frenandes, GL Waring. 1987. Adaptive nature of insect galls. Environ. Entomol. 16: 15-24.
Price PW. 1992. Evolution and ecology of gall-inducing sawflies. Page 208-224 In JD Shorthouse, O Rohfritsch, eds. Biology of Insect-Induced Galls. Oxford University Press, Oxford, England.
Raman A. 2007. Insect-induced plant galls of India: unresolved questions. Current Sci. 92: 748- 757
Rey LA. 1973. Ultrastructure des chloroplastes au cours de leur evolution pathologique dans le tissue central de la jeune galle de Pontania proxima Lep. C. R. Acad. Sci (serie D) 276: 1157-1160.
Rey LA. 1974. Modification ultrastructurales pathologiques presentees par les chloroplastes de la galle de Pontania proxima Lep. En fin de croissance. C. R. Acad. Sci (serie D) 278: 1345-1348.
Rey LA. 1992. Developmental morphology of two types of hymenopterous galls. Page 87-101 In JD Shorthouse, O Rohfritsch, eds. Biology of Insect-Induced Galls. Oxford University Press, Oxford, England.
Saltzmann KD, MP Giovanini, C Zheng, CE Williams. 2008. Virulent hessian fly larvae manipulate the free amino acid content of host wheat plants. J Chem. Ecol. 34: 1401-1410.
Schönrogge K, LJ Harper, CP Lichtenstein. 2000. The protein content of tissues in cynipid galls (Hymenoptera: Cynipidae): Similarities between cynipid galls and seeds. Plant Cell Environ. 23: 215–222
Shorthouse JD, D Wool, A Raman. 2005. Gall-inducing insects –Nature’s most sophisticated herbivores. Basic Appl. Ecol. 6: 407-411.
Stone GN, K Schönrogge. 2003. The adaptive significance of insect gall morphology. Trends Ecol. Evol. 18: 512-522.
Surveswaran S, YZ Cai, H Corke, M Sun. 2007. Systematic evaluation of natural phenolic antioxidants from 133 Indian medicinal plants. Food Chem. 102: 938-953.
Tokuda M, MM Yang, J Yukawa. 2008. Taxonomy and molecular phylogeny of Daphnephila gall midges (Diptera: Cecidomyiidae) inducing complex leaf galls on Lauraceae, with descriptions of five new species associated with Machilus thunbergii in Taiwan. Zool. Sci. 25: 533–545.
Tooker JF, JR Rohr, WG Abrahamson, CM De Moraes. 2008. Gall insects can avoid and alter indirect plant defenses. New Phyto. 178: 657–671.
Wu SH, CY Hwang, TP Lin, JD Chung, YP Cheng, SY Hwang. 2006. Contrasting phylogeographical patterns of two closely related species, Machilus thunbergii and Machilus kusanoi (Lauraceae), in Taiwan. J Biogeogr. 33: 936–947
Yang CM, MM Yang, JM Hsu, WN Jane. 2003. Herbivorous insect causes deficiency of pigment-protein complexes in an oval-pointed cecidomyiid gall of Machilus thunbergii leaf. Bot. Bull. Acad. Sin. 44: 315-321.
Yang CM, MM Yang, MY Huang, JM Hsu, WN Jane. 2007. Lifetime deficiency of photosynthetic pigment-protein complexes CP1, A1, AB1 and AB2 in two cecidomyiid galls derived from Machilus thunbergii leaves. Photosynthetica 45: 589-593.
Yang MM, GS Tung. 1998. The diversity of insect-induced galls on vascular plants in Taiwan: a preliminary report. Pages 44-53 In G Csóka, WJ Mattson, GN Stone, PW Price, eds. The Biology of Gall-Inducing Arthropods. Gen. Tech. Rep. NC-199. St. Paul, MN: USDA, Forest Service, North Central Forest Experiment Station
Yang SY, MY Chen, JT Yang. 2002. Application of cecidomyiid galls to the systematics of the genus Machilus (Lauraceae) in Taiwan. Bot. Bull. Acad. Sin. 43: 31-35.
Yukawa J, N Uechi, M Tokuda, S Sato. 2005. Radiation of gall midges (Diptera: Cecidomyiidae) in Japan. Basic Appl. Ecol. 6: 4