簡易檢索 / 詳目顯示

研究生: 蔡仁哲
Tsai, Jen-Che
論文名稱: 社會性科學議題桌遊的設計與實踐
The design and practice of a board game for socioscientific issues
指導教授: 張俊彥
Chang, Chun-Yen
學位類別: 博士
Doctor
系所名稱: 科學教育研究所
Graduate Institute of Science Education
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 198
中文關鍵詞: 社會性科學議題科學桌遊生物多樣性桌遊教學架構
英文關鍵詞: socioscientific issues, scientific board games, biodiversity, board games instruction
DOI URL: http://doi.org/10.6345/NTNU202000268
論文種類: 學術論文
相關次數: 點閱:302下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 社會性科學議題與桌上遊戲是21世紀培養學生科學素養能力的良好潛力教材之ㄧ。本研究結合科學桌遊與社會性科學議題,設計天佑臺灣科學桌遊其主題為探討臺灣經濟發展與生物保育的兩難議題,讓學生透過小組團隊合作的形式能實際的操作、做抉擇、溝通交流,培養學生能進行不同立場的反思與科學素養能力。
    本研究除了設計社會性科學議題桌遊外,亦提出科學桌遊學習模式(scientific board game learning mode, SBGLM),幫助教師能了解桌遊教學的過程與步驟。SBGLM可區分為四部分:前置、促發、過程、精緻,使學校教師在使用科學桌遊教學有參考的教學架構;其次,本研究對於學生的桌遊過程錄影資料進行編碼整理分析,進一步提出學生桌遊遊玩過程中具有六種狀態,放棄、失望、探索、投入、互動、目標;另外,也具有六種行為表現,無聊、分心、提問/聆聽、對話、思辨/抉擇、主張。研究對象涉及國小、國中、高中、大學等的不同學習階段的學生,共有73位國小學生、59位國中學生、34位高中學生、25位大學生。桌遊的教學過程持續時間各不相同,國小學習階段的課程進行120~180分鐘;高中學習階段的課程進行300~400分鐘;大學學習階段的課程進行300分鐘。本研究共收集學生的生物相關的科學概念認知前、後測量表、開放式題目學習單、課室錄影資料編碼分析、桌遊遊玩過程結果、團體訪談資料等等。
    研究結果顯示,學生在生物概念認知具有良好的成效。國小學生在開放式題目學習單顯示,56%的國小學生認為消滅外來種對於生物保育是重要的;41%的國小學生在桌遊過程中感受到外來種繁殖力強的現象。經過前後測成對樣本t檢定,國中、高中、大學學生在生物相關認知成效皆具有顯著的進步,並達到中等程度的效果量。課室錄影編碼資料分析結果顯示,1.桌遊過程階段會影響學生的桌遊參與狀態與行為表現,相同的桌遊過程階段具有相近的趨勢;2.學生達到目標狀態是困難的,需要授課教師的引導鼓勵;3.在桌遊過程結果中,學生有發生行為的改變並且嘗試對任務目標進行問題解決;4.不同的教師進行桌遊教學,確實會影響學生在桌遊過程中產生不同的參與狀態與行為表現。

    Socioscientific issues and board games are among the best potential textbooks for cultivating students' scientific literacy in the 21st century. This study combines scientific board games with socioscientific issues, which designs a “Be blessed Taiwan” board game. The theme of the board game is to discuss the dilemma of Taiwan ’s economic development and bio-conservation. It allows students to practice, decision making, and communicate through teamwork. Through the board game can cultivate students' scientific literacy and reflection in different positions.
    In addition to designing board games for socioscientific issues, this study also proposes a scientific board game learning mode (SBGLM) to help teachers understand the process and steps of board game teaching. SBGLM can be divided into four parts: pre-process, priming, playing period, and elaboration, so that school teachers can refer board games instruction. Second, according to the video records in the classroom, and further proposes that students have six states during the board game play process. For example, giving up, disappointment, explore, attention, interaction, and goal; and students have six kinds of behavior. For instance, boring, distract, asking/listening, communication, critical thinking/making decision, claim/position.
    There were 73 primary school students, 59 middle school students, 34 high-school students, and 25 college students. The duration of the board game teaching process is 120 ~ 180 minutes for elementary school learning; 300 ~ 400 minutes for high school learning; 300 minutes for university learning. The data collection collects students' biological and related scientific concepts pre-test and post-test, open-ended learning sheets, classroom video data coding analysis, playing process results in the board game, group interviews, and so on.
    The research results showed students have a good effect on the concept of biology. Elementary school students in the open-ended questionnaire showed 56% of elementary school students think that the elimination of exotic species is important for bio conservation. And there were 41% of elementary school students feel that the alien species have strong fertility during the board game. The paired sample t-test analysis results showed that junior high school, high school, and college students have made significant progress in bio-cognitive learning, reaching a moderate level of effect. The data results showed that "Be blessed Taiwan" socioscientific board game instruction can effectively help students achieve biological cognitive learning. The analysis results of classroom video coding data showed that 1. The stage of the board game process will affect the student ’s board game participation state and behavior performance, and the same stage of the board game process has a similar trend. 2. It is difficult for students to achieve the goal state, which needs guidance and encouragement from the instructor. 3. In the results of the board game, students have changed their behaviors and tried to the problem solved the objectives of the task in the board game.4. Each teacher uses the same board game for teaching, which will affect students' different participation states and behaviors during the board game.

    第壹章、現今科學教育的目標與展望 1 第一節 引言 1 第二節 研究目的與研究問題 6 第三節 研究架構 7 第貳章、科學知識遊戲化與遊戲學習 9 第一節 遊戲式學習的特徵 9 第二節 社會性科學議題桌遊的特徵 17 第参章、社會性科學議題桌遊-天佑臺灣 20 第一節 天佑臺灣桌上遊戲的理念與概念設計 20 第二節 天佑臺灣科學桌遊的桌遊規則 34 第三節 天佑臺灣科學桌遊的實體配件 41 第肆章、天佑臺灣科學桌遊的教學過程與設計 46 第一節 天佑臺灣科學桌遊的教學過程階段設計 48 第二節 天佑臺灣科學桌遊中學生遊戲參與狀態與行為表現定義 52 第伍章、天佑臺灣科學桌遊國小階段的教學過程與成效 59 第一節 國小階段桌遊教學過程與數據資料收集說明 59 第二節 國小階段學生學習成效 60 第三節 國小階段學生遊戲過程結果 61 第四節 國小階段課室觀察紀錄 64 第五節 國小階段學生訪談紀錄 71 第六節 天佑臺灣科學桌遊教學對國小階段的建議 76 第陸章、天佑臺灣科學桌遊國中階段的教學過程與成效 78 第一節 國中階段桌遊教學過程與數據資料收集說明 78 第二節 國中階段學生認知學習成效 80 第三節 國中階段學生遊玩過程結果 81 第四節 國中階段課室觀察紀錄 89 第五節 國中階段學生訪談紀錄 100 第六節 天佑臺灣科學桌遊教學對國中階段的建議 106 第柒章、天佑臺灣科學桌遊高中階段的教學過程與成效 109 第一節 高中階段桌遊教學過程與數據資料收集說明 109 第二節 高中階段學生學習成效 110 第三節 高中階段學生遊玩過程結果 111 第四節 高中階段課室觀察紀錄 117 第五節 高中階段學生訪談紀錄 124 第六節 天佑臺灣科學桌遊教學對高中階段的建議 130 第捌章、天佑臺灣科學桌遊大學階段的教學過程與成效 132 第一節 大學階段桌遊教學過程與數據資料收集說明 132 第二節 大學階段學生學習成效 133 第三節 大學階段學生遊玩過程結果 134 第四節 大學階段課室觀察紀錄 140 第五節 大學階段學生開放式問卷紀錄 148 第六節 天佑臺灣科學桌遊教學對大學階段的建議 153 第玖章、各學習階段學生的比較 156 第一節 各學習階段學生的學習成效比較 156 第二節 各學習階段學生的桌遊過程結果比較 159 第三節 各學習階段遊玩天佑臺灣科學桌遊的參與狀態與行為表現的比較 160 第拾章、結論與建議 162 參考文獻 174 附錄一、課室錄影資料編碼表 184 附錄二、課室觀察紀錄各學習階段編碼比例整理 186 附錄三、學生學習單 194 附錄四、學習成果評估工具 197

    中文文獻
    王永福(2019)。教學的技術。臺北市:商周,城邦文化出版。
    行政院(2004)。台灣二十一世紀議程。臺北市: 行政院。
    周郁凱著;王鼎鈞譯(2017)。遊戲化實戰全書。臺北市:商周,城邦文化出版。
    林樹聲、黃柏鴻(2009)。國小六年級學生在社會性科學議題教學中之論證能力研究-不同學業成就學生間之比較。科學教育學刊,17(2),111-133。doi:org/10.6173/CJSE.2009.1702.02
    林季怡、李育諭(2018)。跨領域永續課程提升大學生整體性思考及衝突問題解決能力: 以海洋永續教育為例。科學教育學刊,26(1),1-27。doi:org/ 10.6173/CJSE.201803_26(1).0001
    邱美虹(主編) (2016)。臺灣科學教育研究與實踐:挑戰與機會。臺北市:高等教育,高等教育文化出版。
    邱美虹(2016)。科學模型與建模:科學模型、科學建模與建模能力。檢自http://chemed.chemistry.org.tw/?p=13898
    教育部(2003)。科學教育白皮書。 臺北市: 教育部。
    孫春在(2013)。遊戲式數位學習。臺北市:高等教育,高等教育文化出版。
    翁穎哲、譚克平(2008)。設計研究法簡介及其在教育研究的應用範例。科學教育月刊,307,15-30。
    靳知勤(2014)。台灣所需優先解決的科學教育問題─ 科學與科學教育學者的觀點。教育學報, 42(1),53-76。
    靳知勤、楊惟程、段曉林(2010)。國小學童的非形式推理之研究–以生物複製議題之引導式論證為例。課程與教學,13(1),209-232。
    劉湘瑤、李麗菁、蔡今中(2007)。科學認識觀與社會性科學議題抉擇判斷之相關性探討。科學教育學刊,15(3),335-356。doi:org/10.6173/CJSE.2007.1503.03
    劉俊庚、邱美虹(2012)。我國百年園中科學課程發展回顧與展望。科學教育月刊,347,2-20。
    劉湘瑤、張俊彥(2018)。論自然科學課程綱要中的 [素養] 內涵。科學教育月刊,413,2-9。
    鄭湧涇(2005)。我國科學教育改革的回顧與展望。科學教育月刊,284,2-22。
    鄭秉漢、李文獻、張俊彥(2019)。模型化科學桌遊。科學教育月刊,419,20-38。
    蘇衍丞、林樹聲 (2012)。在社會性科學議題情境下應用鷹架教學提升國小六年級學生論證能力。科學教育學刊,20(4),343-366。doi:org/10.6173/CJSE.2012.2004.03
    英文文獻
    Alexander, S. V., Sevcik, R. S., McGinty, R. L., & Schultz, L. D. (2008). Periodic table target: A game that introduces the biological significance of chemical element periodicity. Journal of Chemical Education, 85(4), 516. doi:org/10.1021/ed085p516
    Ang, C. S. (2006). Rules, gameplay, and narratives in video games. Simulation & Gaming, 37(3), 306-325. doi:org/10.1177/1046878105285604
    Ang, C. S., Avni, E., & Zaphiris, P. (2008). Linking pedagogical theory of computer games to their usability. International Journal on E-Learning, 7(3), 533-558.
    Ananiadou, K., & Claro, M. (2009). 21st century skills and competences for new millennium learners in OECD countries. Retrieved from http://repositorio.minedu.gob.pe/bitstream/handle/123456789/2529/21st%20Century%20Skills%20and%20Competences%20for%20New%20Millennium%20Learners%20in%20OECD%20Countries.pdf?sequence=1&isAllowed=y
    Anupam, A., Gupta, R., Naeemi, A., & JafariNaimi, N. (2018). Particle in a box: an experiential environment for learning introductory quantum mechanics. IEEE Transactions on Education, 61(1), 29-37. doi:org/10.1109/te.2017.2727442
    Bayir, E. (2014). Developing and playing chemistry games to learn about elements, compounds, and the periodic table: elemental periodica, compoundica, and groupica. Journal of Chemical Education, 91(4), 531-535. doi:org/10.1021/ed4002249
    Berland, M., & Lee, V. R. (2011). Collaborative strategic board games as a site for distributed computational thinking. International Journal of Game-Based Learning (IJGBL), 1(2), 65-81. doi:org/10.4018/ijgbl.2011040105
    Bochennek, K., Wittekindt, B., Zimmermann, S. Y., & Klingebiel, T. (2007). More than mere games: a review of card and board games for medical education. Medical teacher, 29(9-10), 941-948. doi:org/10.1080/01421590701749813
    Bourgonjon, J., De Grove, F., De Smet, C., Van Looy, J., Soetaert, R., & Valcke, M. (2013). Acceptance of game-based learning by secondary school teachers. Computers & Education, 67, 21-35. doi:org/10.1016/j.compedu.2013.02.010
    BoardGameGeek. (2018). Board Game Categories. Retrieved from https://boardgamegeek.com/browse/boardgamecategory
    BoardGameGeek. (2019). Board Game Mechanics. Retrieved from https://boardgamegeek.com/browse/boardgamemechanic
    Burgun, K. (2012). Game design theory: A new philosophy for understanding games. New York: AKPeters/CRC Press.
    Bybee, R. W. (2008). Scientific literacy, environmental issues, and PISA 2006: the 2008 Paul F-Brandwein lecture. Journal of Science Education and Technology, 17(6), 566-585. doi:org/10.1007/s10956-008-9124-4
    Casanoves, M., Salvadó, Z., González, Á., Valls, C., & Novo, M. T. (2017). Learning genetics through a scientific inquiry game. Journal of Biological Education, 51(2), 99-106. doi:org/10.1080/00219266.2016.1177569
    Carr, D., Buckingham, D., Burn, A., Scott, G. (2006). Computer Games: Text, Narrative and Play. Cambridge: Polity Press.
    Csikszentmihalyi, M. (1990). Flow: The psychology of optimal experience. New York: Harper & Row.
    Cheng, P. H., Yeh, T. K., & Chang, C. Y. (2016). The utility of the board game for structuralconcept of solar system and learning motivation: An astronomy board game for elementary school students. Paper presented at the 2016 EASE conference, Japan: Tokyo.
    Cheng, P. H., Yeh, T. K., Tsai, J. C., Lin, C. R., Chang, C. Y. (2019). Development of an Issue-Situation-Based Board Game: A systemic learning environment for water resource adaptation education. Sustainability. 11(5), 1341. doi:org/10.3390/su11051341
    Cochran, K. F., DeRuiter, J. A., & King, R. A. (1993). Pedagogical content knowing: Anintegrative model for teacher preparation. Journal of Teacher Education, 44(4), 263–272. doi:org/ 10.1177/0022487193044004004
    Conole G., Dyke M., Oliver M. & Seale J. (2004) Mapping pedagogy and tools for effective learning design. Computers & Education, 43, 17–33. doi.org/10.1016/j.compedu.2003.12.018
    Conway, C., & Leonard, M. (2015). Playing an electron transport system game to improve health students’ learning. Journal of Chemical Education, 92(5), 871-873. doi.org/10.1021/ed500473z
    Cook, D. H. (2014). Conflicts in chemistry: the case of plastics, a role-playing game for high school chemistry students. Journal of Chemical Education, 91(10), 1580-1586. doi.org/10.1021/ed4007277
    Csikszentmihalyi, M. (2014). Flow and the foundations of positive psychology. Dordrecht: Springer.
    Denner, J., Werner, L., & Ortiz, E. (2012). Computer games created by middle school girls: can they be used to measure understanding of computer science concepts? Computers & Education, 58(1), 240-249. doi.org/10.1016/j.compedu.2011.08.006
    Dede, C. (2010). Comparing frameworks for 21st century skills. 21st century skills: Rethinking how students learn, 20, 51-76. doi.org/10.1093/acprof:oso/9780199373222.003.0005
    Dietrich, N. (2018). Escape Classroom: the leblanc process—an educational “Escape Game”. Journal of chemical education, 95(6), 996-999. doi.org/10.1021/acs.jchemed.7b00690
    Divjak, B., & Tomić, D. (2011). The impact of game-based learning on the achievement of learning goals and motivation for learning mathematics-literature review. Journal of Information and Organizational Sciences, 35(1), 15-30.
    Eastwood, M. L. (2013). Fastest fingers: a molecule-building game for teaching organic chemistry. Journal of Chemical Education, 90(8), 1038-1041. doi.org/10.1021/ed3004462
    Eisenack, K. (2013). A climate change board game for interdisciplinary communication and education. Simulation & Gaming, 44(2-3), 328-348. doi.org/10.1177/1046878112452639
    El-Beheiry, M., McCreery, G., & Schlachta, C. M. (2017). A serious game skills competition increases voluntary usage and proficiency of a virtual reality laparoscopic simulator during first-year surgical residents’ simulation curriculum. Surgical endoscopy, 31(4), 1643-1650. doi.org/10.1007/s00464-016-5152-y
    Enyedy, N., Danish, J. A., & DeLiema, D. (2015). Constructing liminal blends in a collaborative augmented-reality learning environment. International Journal of Computer-Supported Collaborative Learning, 10(1), 7-34. doi.org/10.1007/s11412-015-9207-1
    Engelstein, G. (2017). Gametek: The math and science of gaming. New Jersey: BookBaby
    Farmer, S. C., & Schuman, M. K. (2016). A simple card game to teach synthesis in organic chemistry courses. Journal of Chemical Education, 93(4), 695-698. doi.org/10.1021/acs.jchemed.5b00646
    Franco Mariscal, A. J., Oliva Martínez, J. M., & Bernal Márquez, S. (2012). An educational card game for learning families of chemical elements. Journal of Chemical Education, 89(8), 1044-1046. doi.org/10.1021/ed200542x
    Gates, A. E., & Kalczynski, M. J. (2016). The oil game: Generating enthusiasm for geosciences in urban youth in Newark, NJ. Journal of Geoscience Education, 64(1), 17-23. doi.org/10.5408/10-164.1
    Garris, R., Ahlers, R., & Driskell, J. E. (2002). Games, motivation, and learning: A research and practice model. Simulation & Gaming, 33, 441-467. doi.org/10.4324/9781315243092-25
    Gee, J. P. (2005). What would a state of the art instructional video game look like? Innovate: Journal of Online Education, 1(6). doi.org/10.1080/00043125.2010.11519080
    Gee, J. P. (2007). Good video games+ good learning: Collected essays on video games, learning, and literacy. New York:Peter Lang. doi.org/10.19173/irrodl.v8i3.498
    Goon, M. (2011). Peacekeeping the Game. International Studies Perspectives, 12(3), 250-272. doi.org/10.1111/j.1528-3585.2011.00431.x
    Harrison, A. G., & Treagust, D. F. (2000). A typology of school science models. International Journal of Science Education, 22(9), 1011-1026. doi.org/10.1080/095006900416884
    Hojjat, S., Fukuzaki, C., & Sowa, T. (2016). Maze and mirror game design for increasing motivation in studying science in elementary school students. In Interactivity, Game Creation, Design, Learning, and Innovation,12(4), 55-64. doi.org/10.4108/eai.3-10-2017.153155
    Howard‐Jones, P., Demetriou, S., Bogacz, R., Yoo, J. H., & Leonards, U. (2011). Toward a science of learning games. Mind, Brain, and Education, 5(1), 33-41. doi.org/10.1111/j.1751-228X.2011.01108.x
    Hsieh, Y. H., Lin, Y. C., & Hou, H. T. (2016). Exploring the role of flow experience, learning performance and potential behavior clusters in elementary students' game-based learning. Interactive Learning Environments, 24(1), 178-193. doi.org/10.1080/10494820.2013.834827
    Hsu, C. C., & Wang, T. I. (2018). Applying game mechanics and student-generated questions to an online puzzle-based game learning system to promote algorithmic thinking skills. Computers & Education, 121, 73-88. doi.org/10.1016/j.compedu.2018.02.002
    Huitt W. (2001) Humanism and open education. Retrieved from http://www.edpsycinteractive.org/topics/affect/humed.html
    Kavak, N., & Yamak, H. (2016). Picture chem: Playing a game to identify laboratory equipment items and describe their use. Journal of Chemical Education, 93(7), 1253-1255. doi.org/10.1021/acs.jchemed.5b00857
    Kiili, K. (2006). Evaluations of an experiential gaming model. Human Technology: An Interdisciplinary Journal on Humans in ICT Environments, 2(2),187-201. doi.org/10.17011/ht/urn.2006518
    Kirriemuir J. & McFarlane A. (2004) Literature Review in Games and Learning. Bristol University Press, Bristol.
    Knudtson, C. A. (2015). ChemKarta: A card game for teaching functional groups in undergraduate organic chemistry. Journal of Chemical Education, 92(9), 1514-1517. doi.org/10.1021/ed500729v
    Kurushkin, M., & Mikhaylenko, M. (2016). Orbital battleship: A guessing game to reinforce atomic structure. Journal of Chemical Education, 93(9), 1595-1598. doi.org/10.1021/acs.jchemed.6b00136
    Kumar, A., Sah, B., Singh, A. R., Deng, Y., He, X., Kumar, P., & Bansal, R. C. (2017). A review of multi criteria decision making (MCDM) towards sustainable renewable energy development. Renewable and Sustainable Energy Reviews, 69, 596-609. doi.org/10.1016/j.rser.2016.11.191
    Lai, C. H., Lin, Y. C., Jong, B. S., & Hsia, Y. T. (2014). Adding social elements to game-based learning. International Journal of Emerging Technologies in Learning, 9(3), 12-15. doi.org/10.3991/ijet.v9i3.3294
    Lauren, H., Lutz, C., Wallon, R. C., & Hug, B. (2016). Integrating the dimensions of NGSS within a collaborative board game about honey bees. The American Biology Teacher, 78(9), 755-763. doi.org/10.1525/abt.2016.78.9.755
    Law, V., & Chen, C. H. (2016). Promoting science learning in game-based learning with question prompts and feedback. Computers & Education, 103, 134-143. doi.org/10.1016/j.compedu.2016.105
    Lee, C. H., Zhu, J. F., Lin, T. L., Ni, C. W., Hong, C. P., Huang, P. H., ... & Ho, M. L. (2016). Using a table tennis game,“Elemental Knock-Out”, to increase students’ familiarity with chemical elements, symbols, and atomic numbers. Journal of Chemical Education, 93(10), 1744-1748. doi.org/10.1021/acs.jchemed.6b00341
    Lee, S. W. Y., Tsai, C. C., Wu, Y. T., Tsai, M. J., Liu, T. C., Hwang, F. K., ... & Chang, C. Y. (2011). Internet‐based science learning: A review of journal publications. International Journal of Science Education, 33(14), 1893-1925. doi.org/10.1080/09500693.2010.536998
    Li, M. C., & Tsai, C. C. (2013). Game-based learning in science education: A review of relevant research. Journal of Science Education and Technology, 22(6), 877-898. doi.org/10.1007/s10956-013-9436-x
    Maloney, D. P., & Masters, M. F. (2010). Learning the game of Formulating and Testing Hypotheses and Theories. The Physics Teacher, 48(1), 22-24. doi.org/10.1119/1.3274353
    Marino, M. T., Israel, M., Beecher, C. C., & Basham, J. D. (2013). Students’ and teachers’ perceptions of using video games to enhance science instruction. Journal of Science Education and Technology, 22(5), 667-680. doi.org/10.1007/s10956-012-9421-9
    Moreira, R. F. (2013). A game for the early and rapid assimilation of organic nomenclature. Journal of Chemical Education, 90(8), 1035-1037. doi.org/10.1021/ed300473r
    Morris, T. A. (2011). Go chemistry: a card game to help students learn chemical formulas. Journal of Chemical Education, 88(10), 1397-1399. doi.org/10.1021/ed100661c
    Muratet, M., Torguet, P., Jessel, J. P., & Viallet, F. (2009). Towards a serious game to help students learn computer programming. International Journal of Computer Games Technology, 2009, 3. doi.org/10.1201/b13124-13
    Musacchio, G., Piangiamore, G. L., D’Addezio, G., Solarino, S., & Eva, E. (2015). “Scientist as a game”: learning geoscience via competitive activities. Annals of Geophysics, 58(3), 0328. doi.org/10.4401/ag-6695
    New Media Consortium. (2005). The Horizon Report 2005. Retrieved from www.nmc.org/pdf/2005_Horizon_Report.pdf.
    New Media Consortium. (2006). The Horizon Report–2006 Edition. Retrieved from https://www.nmc.org/pdf/2006_Horizon_Report.pdf
    Peppler, K., Danish, J. A., & Phelps, D. (2013). Collaborative gaming: Teaching children about complex systems and collective behavior. Simulation & Gaming, 44(5), 683-705. doi.org/10.1177/1046878113501462
    Pedretti, E. (2003). Teaching science, technology, society and environment (STSE) education. In the role of moral reasoning on socioscientific issues and discourse in science education (pp. 219-239). Netherlands:Kluwer Academic Publishers.
    Pippins, T., Anderson, C. M., Poindexter, E. F., Sultemeier, S. W., & Schultz, L. D. (2011). Element Cycles: An environmental chemistry board game. Journal of Chemical Education, 88(8), 1112-1115. doi.org/10.1021/ed100576a
    Prensky, M. (2001). Fun, play and games: What makes games engaging. Digital game-based learning, 5, 1-05.
    Roberts, D. A. (2007). Scientific literacy/science literacy. In S. K. Abell & N. G. Lederman (eds.), Handbook of research on science education. London: Lawrence Erlbaum Associates.
    Sadler, T. D. (2004). Informal reasoning regarding socioscientific issues: A critical review of research. Journal of Research in Science Teaching: The Official Journal of the National Association for Research in Science Teaching, 41(5), 513-536. doi.org/10.1002/tea.20009
    Sampson, C., Linard, E., & Garcia-Chance, L. (2018). Life's a beach: using role-playing scenarios to facilitate water quality studies. The American Biology Teacher, 80(5), 353-358. doi.org/10.1525/abt.2018.80.5.353
    Sanchez, C. A. (2012). Enhancing visuospatial performance through video game training to increase learning in visuospatial science domains. Psychonomic Bulletin & Review, 19(1), 58-65. doi.org/10.3758/s13423-011-0177-7
    Spandler, C. (2016). Mineral supertrumps: a new card game to assist learning of mineralogy. Journal of Geoscience Education, 64(2), 108-114. doi.org/10.5408/15-095.1
    Squire, K., & Jenkins, H. (2003). Harnessing the power of games in education. Insight, 3(1), 5-33.
    Steinkuehler, C., & Duncan, S. (2008). Scientific habits of mind in virtual worlds. Journal of Science Education and Technology, 17(6), 530-543. doi.org/10.1007/s10956-008-9120-8
    Stokes, L. C., & Selin, N. E. (2016). The mercury game: evaluating a negotiation simulation that teaches students about science-policy interactions. Journal of Environmental Studies and Sciences, 6(3), 597-605. doi.org/10.1007/s13412-014-0183-y
    Tsai, J. C., Cheng, P. H., Liu, S. Y., & Chang, C. Y. (2019). Using board games to teach socioscientific issues on biological conservation and economic development in Taiwan. Journal of Baltic Science Education, 18(4), 634-645. doi:org/10.33225/jbse/19.18.634.
    Trevino, R., Majcher, C., Rabin, J., Kent, T., Maki, Y., & Wingert, T. (2016). The effectiveness of an educational game for teaching optometry students basic and applied science. PloS one, 11(5), e0156389. doi.org/10.1371/journal.pone.0156389
    United Nations Educational, Scientific and Cultural Organization. (2005, January). United Nations decade of education for sustainable development, 2005–2014: Draft international implementation scheme. Retrieved from http://unesdoc.unesco.org/images/0013/001399/139937e.pdf
    Van Eck, R. (2006). Digital game-based learning: It's not just the digital natives who are restless. EDUCAUSE review, 41(2), 16. Retrieved from https://www.researchgate.net/profile/Richard_Van_Eck/publication/242513283_Digital_Game_Based_LEARNING_It's_Not_Just_the_Digital_Natives_Who_Are_Restless/links/0a85e53cd61cf43e29000000.pdf
    Von Glasersfeld, E. (2001). The radical constructivist view of science. Foundations of science, 6(1-3), 31-43. doi.org/10.1023/A:1011345023932
    Wallace, S. A., McCartney, R., & Russell, I. (2010). Games and machine learning: a powerful combination in an artificial intelligence course. Computer Science Education, 20(1), 17-36. doi.org/10.1080/08993400903525099
    Wallon, R. C., Jasti, C., Lauren, H. Z., & Hug, B. (2018). Implementation of a curriculum-integrated computer game for introducing scientific argumentation. Journal of Science Education and Technology, 27(3), 236-247. doi.org/10.1007/s10956-017-9720-2
    Wu, W. H., Hsiao, H. C., Wu, P. L., Lin, C. H., & Huang, S. H. (2012). Investigating the learning‐theory foundations of game‐based learning: a meta‐analysis. Journal of Computer Assisted Learning, 28(3), 265-279. doi.org/10.1111/j.1365-2729.2011.00437.x
    Yoon, D. M., & Kim, K. J. (2015). Challenges and opportunities in game artificial intelligence education using Angry Birds. IEEE Access, 3, 793-804. doi.org/10.1109/access.2015.2442680
    Michael F. Young, Stephen Slota, Andrew B. Cutter, Gerard Jalette, Greg Mullin, Benedict Lai, Zeus Simeoni, Matthew Tran, and Mariya Yukhymenko (2012). Our princess is in another castle: A review of trends in serious gaming for education. Review of Educational Research, 82(1), 61-89. doi.org/10.3102/0034654312436980
    Yusof, S. A. M., Radzi, S. H. M., Din, S. N. S., & Khalid, N. (2016). A study on the effectiveness of task manager board game as a training tool in managing project. Paper presented at the AIP Conference Proceedings. doi.org/10.1063/1.4960914
    Zeidler, D. L., Sadler, T. D., Simmons, M. L., & Howes, E. V. (2005). Beyond STS: A research‐based framework for socioscientific issues education. Science Education, 89(3), 357-377. doi.org/10.1002/sce.20048

    無法下載圖示 本全文未授權公開
    QR CODE