簡易檢索 / 詳目顯示

研究生: 周俊仰
Chou, Chun-Yang
論文名稱: 可調式隨機雷射與熱膨脹係數之研究
Study on flexible random lasers with tunable lasing emissions and thermal expansion coefficients
指導教授: 李亞儒
Lee, Ya-Ju
學位類別: 博士
Doctor
系所名稱: 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 77
中文關鍵詞: 隨機雷射銀奈米稜鏡局域表面電漿彎曲應變熱膨脹係數光學相干斷層掃描
英文關鍵詞: Random laser, Silver nanoprism, Localized surface plasmon, Bending strain, Coefficient of thermal expansion, Optical coherence tomography
DOI URL: http://doi.org/10.6345/DIS.NTNU.EPST.019.2018.E08
論文種類: 學術論文
相關次數: 點閱:165下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究分為兩個部分。1.可調式隨機雷射、2.使用光學斷層掃描測定大功率InGaN基板發光二極體的熱膨脹係數。
    在研究中,我們通過實驗證明了在聚對苯二甲酸乙二醇酯(PET)基材上製造的可調式隨機雷射,其雷射發射具有高度的可調性。隨機雷射振盪主要來自增益介質(羅丹明6G,R6G)發射光子與銀奈米稜鏡(Ag NPRs)的局域表面電漿(LSP)之間的共振耦合,這增加了多光散射的有效截面,從而刺激雷射發射。
    更重要的是,隨機振蕩波長隨著施加在PET基材上彎曲應變的增加而藍移,並且在彎曲應變為50%時雷射波長實現了約15nm的最大偏移施加在PET基材上。這種觀察是高度可重複的和可逆的,並且這證明我們可以通過簡單地彎曲用Ag NPRs裝飾的可調基底來控制雷射波長。使用顯微鏡測量AgNPRs的散射光譜以了解波長漂移對施加的彎曲應變依賴性的機制。因此,我們相信基於顯示結構的可調式雷射發射的實驗性展示,有望開創隨機雷射的新應用領域。
    熱膨脹係數(CTE)是指加熱時材料的熱膨脹值的物理量。對於先進的熱管理,由於對高功率發光二極體(LED)的需求正在增加,所以準確和即時確定包裝材料的CTE正變得越來越重要。在這項研究中,我們使用光學相干斷層掃描(OCT)來測量封裝在聚苯乙烯樹脂中的InGaN基板(λ= 450 nm)高功率LED的CTE。觀察和記錄OCT圖像的各個界面之間的距離,以導出在不同註入電流下封裝LED的瞬時CTE。順向電壓法建立了不同注入電流下的LED結溫。因此,測得的聚苯乙烯樹脂的瞬時CTE在25-225℃的結溫範圍內從5.86×10-5℃-1變化到14.10×10-5℃-1,並且在OCT掃描區域中呈現均勻分佈200微米×200微米。最重要的是,這項工作證實了OCT可以提供一種替代方法來直接和非破壞性地確定封裝LED器件的空間分辨CTE的假設,並提供了優於傳統CTE測量技術的顯著優勢。

    The study is divided into two parts. 1. Flexible random lasers with tunable lasing emissions. 2. Determination on the Coefficient of Thermal Expansion in High-Power InGaN-based Light-emitting Diodes by Optical Coherence Tomography.
    In this study, we experimentally demonstrated a flexible random laser fabricated on the polyethylene terephthalate (PET) substrate with a high degree of tunability in lasing emissions. Random lasing oscillation arises mainly from the resonance coupling between the emitted photons of gain medium (Rhodamine 6G, R6G) and the localized surface plasmon (LSP) of silver nanoprisms (Ag NPRs), which increases the effective cross-section for multiple light scattering, thus stimulating the lasing emissions.
    More importantly, it is found that the random lasing wavelength is blue-shifted monolithically with the increase in bending strains exerted on the PET substrate, and a maximum shift of ~15 nm was achieved in the lasing wavelength, when a 50% bending strain was exerted on the PET substrate. Such observation is highly repeatable and reversible, and this validates that we can control the lasing wavelength by simply bending the flexible substrate decorated with the Ag NPRs. The scattering spectrum of the Ag NPRs is measured using a dark-field microscope to understand the mechanism for the dependence of wavelength shift on the exerted bending strains. As a result, we believe that the experimental demonstration of tunable lasing emissions based on the revealed structure is expected to open up a new application field of random lasers.
    The coefficient of thermal expansion (CTE) is a physical quantity that indicates the thermal expansion value of a material upon heating. For advanced thermal management, the accurate and immediate determination of the CTE of packaging materials is gaining importance because the demand for high-power lighting-emitting diodes (LEDs) is currently increasing. In this study, we used optical coherence tomography (OCT) to measure the CTE of an InGaN-based (λ = 450 nm) high-power LED encapsulated in polystyrene resin. The distances between individual interfaces of the OCT images were observed and recorded to derive the instantaneous CTE of the packaged LED under different injected currents. The LED junction temperature at different injected currents was established with the forward voltage method. Accordingly, the measured instantaneous CTE of polystyrene resin varied from 5.86 × 10-5 °C-1 to 14.10 × 10-5 °C-1 in the junction temperature range 25–225 °C and exhibited a uniform distribution in an OCT scanning area of 200 μm × 200 μm. Most importantly, this work validates the hypothesis that OCT can provide an alternative way to directly and nondestructively determine the spatially resolved CTE of the packaged LED device, which offers significant advantages over traditional CTE measurement techniques.

    中文摘要 I Abstract III Contents V List of figures VII Chapter 1 Introduction 1 1-1 Optical properties of random lasers 1 1-2 Bending strain of PET substrate 6 Chapter 2 Experimental method 9 2-1 Synthesis of silver nanoprisms (Ag NPRs) 9 2-2 Evolution of the absorption spectrum of Ag NPRs with different synthesis times 10 2-3 Device fabrication 12 2-4 Characterization of a random laser measurement system 13 Chapter 3 R6G film incoporated with the Ag NPRs 15 3-1 Plasmonic effect of Ag NPRs on R6G 15 3-2 Emission of R6G in methanol for different dye concentrations 21 3-3 Random lasers observed on R6G with the Ag NPRs 24 3-4 FDTD simulations of electric field distribution in the Ag NPRs 36 3-5 Durability test 38 Chapter 4 The thermal expansion of high power LED 41 4-1 Introduction 41 4-1-1 Thermal management 41 4-1-2 The advantages of OCT 43 4-2 High-power InGaN-based LEDs 46 4-3 Junction temperature of the LEDs 49 Chapter 5 Thermal expansion coefficient determined by the OCT 51 5-1 Cross-sectional 2D & 3D OCT images 51 5-2 Thickness variance vs. injected current 56 5-3 Spatial distribution of thermal strain & CTE 61 5-4 Statistical results of CTE value under different injection current 64 Chapter 6 Conclusions 67 References 69

    [1.1] V. S. Letokhov, JETP Lett. 1967, 5, 212–215
    [1.2] M. A. Noginov, Springer, 2005.
    [1.3] H. Cao, Optics & Photonics News 2005, 16(1), 24-29.
    [1.4] D. S. Wiersma, Nat. Phys. 2008, 4, 359−367.
    [1.5] Y. C. Yao, Z. P. Yang, J. M. Hwang, H. C. Su, J. Y. Haung, T. N. Lin, J. L. Shen, M. H. Lee, M. T. Tsai, Y. J. Lee, Adv. Opt. Mater. 2017, 5, 1600746.
    [1.6] . W. Anderson, Phys. Rev.1958, 109, 1492–1505.
    [1.7] G. Bergmann, Phys. Rev. B 1982, 25, 2937–2939.
    [1.8] S. John, Phys. Rev. Lett. 1984, 53, 2169–2172.
    [1.9] D. S. Wiersma, P. Bartolini, A. Lagendijk, R. Righin, Nat. Phys. 1997, 390, 671-673.
    [1.10] M. Storzer, P. Gross, C. M. Aegerter, G. Maret, Phys. Rev. Lett. 2006, 96, 063904.
    [1.11] X. Jiang, C. M. Soukoulis, Phys. Rev. E 2002, 65, 025601(R).
    [1.12] H. Cao, Y. G. Zhao, H. C. Ong, S. T. Ho, J. Y. Dai, J. Y. Wu, R. P. H. Chang, Appl. Phys. Lett. 1998, 73, 3656–3658.
    [1.13] M. Sakai, Y. Inose, K. Ema, T. Ohtsuki, H. Sekiguchi, A. Kikuchi, K. Kishino,
Appl. Phys. Lett. 2010, 97, 151109.
    [1.14] L. Sznitko, K. Kaliciak, A. Adamow, J. Mysliwiec, Opt. Mater. 2016, 56, 121-128.
    [1.15] F. Yao, W. Zhou, H. Bian, Y. Zhang, Y. Pei, X. Sun, Z. Lv, Opt. Lett. 2013, 38(9), 1557–1559.
    [1.16] R. C. Polson, A. Chipouline, Z. V. Vardeny, Adv. Mater. 2001, 13, 760−764.
    [1.17] R. C. Polson, Z. V. Vardeny, Phys. Rev. B. 2005, 71, 045205.
    [1.18] F. Lahoz, I. R. Martín, M. Urgellés, J. Marrero-Alonso, R. Marín, C. J. Saavedra, A. Boto, M. Díaz, Laser Phys. Lett. 2015, 12, 045805.
    [1.19] Y. Wang, Z. Duan, Z. Qiu, P. Zhang, J. Wu, D. Zhang, T. Xiang, Sci. Rep. 2017, 7, 8385.
    [1.20] D. S. Wiersma, S. Cavalieri, Nature 2001, 414, 708–709.
    [1.21] B. H. Hokr, J. N. Bixler, M. T. Cone, J. D. Mason, H. T. Beier, G. D. Noojin, G. I. Petrov, L. A. Golovan, R. J. Thomas, B. A. Rockwell, V. V. Yakovlev, Nat. Commun. 2014, 5, 4365.
    [1.22] R. Choe, A. Corlu, K. Lee,T. Durduran, S. D. Konecky, M. Grosicka-Koptyra, S. R. Arridge, B. J. Czerniecki, D. L. Fraker, A. DeMichele, B. Chance, M. A. Rosen, A. G. Yodh, Med. Phys. 2005, 32, 1128–1139.
    [1.23] S. Gottardo, S. Cavalieri, O. Yaroschuck, D. S. Wiersma, Phys. Rev. Lett. 2004, 93, 2639
    [1.24] Q. Song, L. Liu, L. Xu, Y. Wu, Z. Wang, Opt. Lett. 2009, 34(3), 298–300.
    [1.25] P. D. García, R. Sapienza, Á. Blanco, C. López, Adv. Mate. 2007, 19, 2597–2602.
    [1.26] R. Sapienza, P. D. García, J. Bertolotti, M. D. Martín, A. Blanco, L. Viña, C. López, D. S. Wiersma, Phys. Rev. Lett. 2007, 99, 233902
    [1.27] S. Gottardo, R. Sapienza, P. D. García, A. Blanco, D. S. Wiersma, C. López, Nat. Photonics 2008, 2, 429–432
    [1.28] E. S. P. Leong, S. F. Yu, S. P. Lau, A. P. Abiyasa, Lett. 2007, 19, 1792–1794.
    [1.29] T. M. Sun, C. S. Wang, C. S. Liao, S. Y. Lin, P. Perumal, C. W. Chiang, Y. F. Chen, ACS Nano 2015, 9(12), 12436–12441.
    [1.30] T. Zhai, J. Chen, L. Chen, J. Wang, L. Wang, D. Liu, S. Li, H. Liu, X. Zhang, Nanoscale 2015, 7, 2235–2240.
    [1.31] S. P. Lau, H. Yang, S. F. Yu, C. Yuen, E. S. P. Leong, H. Li, H. H. Hng, Small 2005, 1(10), 956–959.
    [1.32] J. Ziegler, C. Wörister, C. Vidal, C. Hrelescu, T. A. Klar, ACS Photonics 2016, 3 (6), 919.
    [1.33] T. Zhai, X. Zhang, Z. Pang, X. Su, H. Liu, S. Feng, L. Wang, Nano Letters 2011, 11 (10), 4295.
    [1.34] G. D. Dice, S. Mujumdar, A. Y. Elezzabi, Appl. Phys. Lett. 2005, 86, 131105.
    [1.35] T. S. Kao, Y. H. Chou, C. H. Chou, F. C. Chen, T. C. Lu,
Appl. Phys. Lett. 2014, 105, 231108.
    [1.36] Y. H. Chou, B. T. Chou, C. K. Chiang, Y. Y. Lai, C. T. Yang, H. Li, T. R. Lin, C. C. Lin, H. C. Kuo, S. C. Wang, T. C. Lu, ACS Nano 2015, 9(4), 3978–3983.
    [1.37] Y. H. Chou, Y. M. Wu, K. B. Hong, B. T. Chou, J. H. Shih, Y. C. Chung, P. Y. Chen, T. R. Lin, C. C. Lin, S. D. Lin, T. C. Lu, Nano Lett. 2016, 16(5), 3179–3186.
    [2.1] Q. Zhang, N. Li, J. Goebl, Z. Lu, Y. Yin, J. Am. Chem. Soc., 2011, 133, 18931–18939.
    [3.1] Q. Zhang, N. Li, J. Goebl, Z. Lu, Y. Yin, J. Am. Chem. Soc., 2011, 133, 18931–18939.
    [3.2] S. Biswas, P. Kumbhakar, Applied Physics A 2018, 124:6.
    [3.3] R. Jin, Y. Cao, C. A. Mirkin, K. L. Kelly, G. C. Schatz, J. G. Zheng, Science, 2001, 294, 1901−1903.
    [3.4] S Biswas, P. Kumbhakar, Nanoscale 2017, 9, 18812–18818.
    [3.5] D. S. Rahman, S. Deb, S. K. Ghosh, J. Phys. Chem. C 2015, 119, 27145−27155.
    [3.6] M. I. Nathan, A. B. Fowler, G. Burns, Phys. Rev. Lett. 1963, 11, 152–154.
    [3.7] B. T. Chiad, K. H. Latif, F. J. Kadhim, M. A. Hammed, Advances in Materials Physics and Chemistry 2011, 1, 20–25.
    [3.8] L. Yang, G. Feng, J. Yi, K. Yao, G. Deng, S. Zhou, Appl. Opt. 2011, 50(13), 1816–1821.
    [3.9] H. Zhang, G. Feng, H. Zhang, C. Yang, J. Yin, S. Zhou, Results in Physics 2017, 7 2968–2972.
    [3.10] T. Horio, H. Hotani, Nature 1986, 321(6070), 605–607.
    [3.11] Y. L. Chiang, C. W. Chen, C. H. Wang, C. Y. Hsieh, Y. T. Chen, H. Y. Shih, Y. F. Chen, Appl. Phys. Lett. 2010, 96, 041904.
    [4.1] Piper, W. W. et al. Theory of electroluminescence. Phys. Rev. 98, 1809-1813 (1955).
    [4.2] Mead, C. Electron transport mechanisms in thin insulating films, Phys. Rev. 128, 2088-2093(1962).
    [4.3] Park, W. Y. et al. Efficiency improvement opportunities in TVs: Implications for market transformation programs, Energy Policy 59, 361-372(2013).
    [4.4] Lee, Y. J. et al. Effect of Surface Texture and Backside Patterned Reflector on the AlGaInP Light-Emitting Diode: High Extraction of Waveguided Light, IEEE J. Quant. Electron. 4, 636-641(2011).
    [4.5] Chen, P. C. et al. Color separation system with angularly positioned light source module for pixelized backlighting, Opt. Express 18, 645-655 (2010).
    [4.6] McKendry, J. J. D. et al. High-Speed Visible Light Communications Using Individual Pixels in a Micro Light-Emitting Diode Array, IEEE Photon. Technol. Lett. 22, 1346-1348 (2010).
    [4.7] Zeng, L. et al. High data rate multiple input multiple output (MIMO) optical wireless communications using white led lighting, IEEE J. Sel. Areas Commun. 27, 1654-1662 (2009).
    [4.8] Schubert, E. F. et al. Solid-State Light Sources Getting Smart, Science 308, 1274-1278 (2005).
    [4.9] Wang, H. C. et al. All-reflective RGB LED flashlight design for effective color mixing, Opt. Express 24, 4411-4420 (2016).
    [4.10] Lee, Y. J. et al. Slanted n-ZnO/p-GaN nanorod arrays light-emitting diodes grown by oblique-angle deposition, APL Mater. 2, 056101 (2014).
    [4.11] Krames, M. R. et al. Status and Future of High-Power Light-Emitting Diodes for Solid-State Lighting, IEEE J. Display Technol. 3, 160-175(2007).
    [4.12] Craford M. G. LEDs for solid state lighting and other emerging applications: status, trends, and challenges. Proc. SPIE 5941, Fifth International Conference on Solid State Lighting, 594101 (2005).
    [4.13] Pimputkar, S. et al. Prospects for LED lighting, Nature Photonics 3, 180-182 (2009).
    [4.14] Okada, Y. et al. Precise determination of lattice parameter and thermal expansion coefficient of silicon between 300 and 1500 K, J. Appl. Phys. 56, 314 (1984).
    [4.15] James, J. D. et al. A review of measurement techniques for the thermal expansion coefficient of metals and alloys at elevated temperatures, Meas. Sci. Technol. 12, R1-R15 (2001).
    [4.16] Li, T. et al. High-performance light-emitting diodes encapsulated with silica-filled epoxy materials, ACS Appl. Mater. Interfaces 5, 8968-8981 (2013).
    [4.17] Chen, Z. et al. Reliability test and failure analysis of high power LED packages
, J. Semicond. 32, 014007 (2011).
    [4.18] Huang, D. et al. Optical coherence tomography. Science 254, 1178-1181 (1991).
    [4.19] Tearney, G. J., Bouma, B. E., & Fujimoto, G. J. High-speed phase- and group-delay scanning with a grating-based phase control delay line. Opt. Lett. 22, 1811-1813 (1997).
    [4.20] Rosa, C. C., Rogers, J., & Podoleanu, A. G. Fast scanning transmissive delay line for optical coherence tomography. Opt. Lett. 30, 3263-3265 (2005).
    [4.21] Nankivil, D. et al. Coherence revival multiplexed, buffered swept source optical coherence tomography: 400 kHz imaging with a 100 kHz source. Opt. Lett. 39, 3740-3743 (2014).
    [4.22] Grulkowski, I. et al. High-precision, high-accuracy ultralong-range swept-source optical coherence tomography using vertical cavity surface emitting laser light source. Opt. Lett. 38, 673-675 (2013).
    [4.23] An, L., Li, P., Shen, T. T. & Wang, R. High speed spectral domain optical coherence tomography for retinal imaging at 500,000 A‑lines per second. Biomed. Opt. Express 2, 2770-2783 (2011).
    [4.24] Tsai, M. T. & Chan, M.-C. Simultaneous 0.8, 1.0, and 1.3 μm multispectral and common-path broadband source for optical coherence tomography. Opt. Lett. 39, 865-868 (2014).
    [4.25] Adler, D. C. et al. Three-dimensional endomicroscopy using optical coherence tomography, Nat. Photon. 1, 709-716 (2007).
    [4.26] Lee, H. C. et al. Ultrahigh-speed spectral domain optical coherence microscopy, Biomed. Opt. Express 4, 1236-1254 (2013).
    [4.27] Baran, U. et al. OCT-based label-free in vivo lymphangiography within human skin and areola, Sci. Rep. 6 21122 (2016).
    [4.28] Tsai, M. T. et al. Effective indicators for diagnosis of oral cancer using optical coherence tomography, Opt. Express 16, 15847-15862 (2008).
    [4.29] Campbell, J. P. et al. Detailed vascular anatomy of the human retina by projection-resolved optical coherence tomography angiography, Sci. Rep. 7, 42201(2017).
    [4.30] Kim, S. H. et al. Nondestructive defect inspection for LCDs using optical coherence tomography, Displays 32, 325-329 (2011).
    [4.31] Tsai, M. T. et al. Optical inspection of solar cells with phase-sensitive optical coherence tomography, Sol. Energ. Mat. Sol. Cells 136, 193-199 (2015).
    [4.32] Prykari, T. et al. Optical coherence tomography as an accurate inspection and quality evaluation technique in paper industry, Opt. Rev. 17, 218–222 (2010).
    [4.33] Tsai, M. T. et al. Defect detection and property evaluation of indium tin oxide conducting glass using optical coherence tomography, Opt. Express 19, 7559–7566 (2011).
    [4.34] Fan, J. J. et al. Physics-of-failure-based prognostics and health Management for high-power white light-emitting diode lighting, IEEE Trans. Device Mater. Reliab. 11, 407−416 (2011).
    [4.35] Schubert, E. F. Light-Emitting Diodes (Cambridge University, 2006).
    [4.36] Yao, Y. C. et al. Enhanced external quantum efficiency in GaN-based vertical- type light-emitting diodes by localized surface plasmons, Sci. Rep. 6, 22659 (2016).
    [4.37] Waltereit, P. et al. Nitride semiconductors free of electrostatic fields for efficient white light-emitting diodes, Nature 406, 865-868 (2000).
    [4.38] Xi, Y. and Schubert, E. F. Junction–temperature measurement in GaN ultraviolet light-emitting diodes using diode forward voltage method, Appl. Phys. Lett. 85, 2163-2165 (2004).
    [4.39] Lee, Y. J. et al. Determination of Junction Temperature in InGaN and AlGaInP Light-Emitting Diodes, IEEE J. Quant. Electron. 46, 1450-1455 (2010).
    [5.1] Zhi, C. et al. Towards thermoconductive, electrically insulating polymeric composites with boron nitride nanotubes as fillers, Adv. Funct. Mater. 19, 1857-1862 (2009).
    [5.2] DeMaggio, G. B. et al. Interface and surface effects on the glass transition in thin polystyrene films, Phys. Rev. Lett. 78, 1524-1527 (1997).
    [5.3] Fujii, T. et al. Increase in the extraction efficiency of GaN-based light-emitting diodes via surface roughening, Appl. Phys. Lett. 84, 855-857 (2004).

    下載圖示
    QR CODE