簡易檢索 / 詳目顯示

研究生: 楊皓雯
論文名稱: 金屬奈米粒子之尺寸和形狀控制及其對乙醇氧化反應的影響
Size and Shape Control of Metal Nanoparticles and Their Effects on Ethanol Oxidation
指導教授: 王禎翰
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2014
畢業學年度: 103
語文別: 中文
論文頁數: 81
中文關鍵詞: 氧化乙醇蒸氣重組尺寸奈米合成
英文關鍵詞: oxidative ethanol steam reforming, Ag, Au, Pd, Pt, size, nano-synthesis
論文種類: 學術論文
相關次數: 點閱:200下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文使用化學還原法合成了Pd、Pt、Ag、Au四種金屬的不同形狀、尺寸奈米粒子,並測試其對乙醇氧化的催化反應。藉由調整界面活性劑、還原劑及其他反應條件,來控制奈米粒子的尺寸和形狀。使用了穿燧式電子顯微鏡、X光繞射分析儀、和紫外-可見光光譜儀作特性鑑定,並沈積到支撐物氧化鋁上,作乙醇氧化的催化活性測試。
    實驗結果發現,尺寸較小的Ag、Pd和方形Pd奈米粒子有較強的斷碳-碳鍵能力,能有效地使乙醇氧化成乙醛和二氧化碳;而Pt奈米粒子僅在斷碳-碳鍵的能力上有所提昇,生成較多的一氧化碳。另一方面,縮小Au奈米粒子的尺寸不僅能夠有效地提昇氧化能力,增加對乙醛的選擇率,同時也能夠減少乙烯的產生,避免形成碳沉積。

    Different shaped and sized nanoparticles of Pd, Pt, Ag and Au have been synthesized by chemical reduction method and investigated for their catalytic activity of ethanol reforming. The sizes and shapes were controlled by adjusting the reagents of surfactants and reductants and the synthetic conditions. The synthesized nanoparticles were initially characterized by TEM, XRD and UV-Visible spectroscopy and further impregnated on Al2O3 supports for the catalytic reaction of ethanol oxidation.
    The catalysis result finds that the smaller sized Ag, Pd and cubic Pd nanoparticles show greater ability to break ethanol’s C-C bond and can effectively oxidize ethanol to acetaldehyde and carbon dioxide; while smaller Pt nanoparticles give greater C-C bond-breaking ability and produce a larger amount of carbon monoxide. On the other hand, decreasing in the size of Au nanoparticles raises their selective oxidation ability forming acetaldehyde and diminishes the formation of ethylene and carbon deposition.

    摘要 1 Abstract 2 謝誌 3 目錄 4 圖目錄 6 表目錄 11 第一章 緒論 12 1-1 能源發展與生質乙醇 12 1-2 乙醇氧化反應與催化劑 14 1-3 奈米材料特性 17 1-4 奈米材料合成 19 1-5 奈米材料表面催化 21 1-6 近年奈米材料催化研究 23 第二章 實驗部份 27 2-1 實驗用藥品 27 2-2 實驗用氣體 28 2-3 實驗器材與儀器 29 2-4 催化劑製備 30 2-5 催化劑之特性鑑定 38 2-6 催化劑在乙醇氧化反應的活性測試 39 2-7 活性測試的產物分析 42 2-8 Gas Hour Space Velocity、轉換效率與產率選擇率計算 45 第三章 結果與討論 47 3-1 奈米金屬及催化劑特性鑑定 47 3-2 奈米合成之尺寸控制 57 3-3 奈米合成之形狀控制 60 3-4 乙醇蒸氣重組反應 64 第四章 結論 78 4-1 結論 78 4-2 未來研究方向 78 參考文獻 79

    1. World Energy Resources: A Summary 2013.
    2. Masatake Haruta, T. K., Hiroshi Sano, and Nobumasa Yamada, Novel Gold Catalysts for The Oxidation of Carbon Monoxide at A Temperature Far Below 0 ℃. The Chemical Society of Japan 1987, 16 (2), 405-408.
    3. Lei, Y.; Mehmood, F.; Lee, S.; Greeley, J.; Lee, B.; Seifert, S.; Winans, R. E.; Elam, J. W.; Meyer, R. J.; Redfern, P. C.; Teschner, D.; Schlogl, R.; Pellin, M. J.; Curtiss, L. A.; Vajda, S., Increased Silver Activity for Direct Propylene Epoxidation via Subnanometer Size Effects. Science 2010, 328 (5975), 224-228.
    4. Huang, S.-Y.; Huang, C.-D.; Chang, B.-T.; Yeh, C.-T., Chemical Activity of Palladium Clusters: Sorption of Hydrogen. J. Phys. Chem. B 2006, 110, 21783-21787.
    5. (a) Chen, J.; Zhang, Q.; Wang, Y.; Wan, H., Size-Dependent Catalytic Activity of Supported Palladium Nanoparticles for Aerobic Oxidation of Alcohols. Adv. Synth. Catal. 2008, 350, 453-464; (b) Li, F.; Zhang, Q.; Wang, Y., Size dependence in solvent-free aerobic oxidation of alcohols catalyzed by zeolite-supported palladium nanoparticles. Applied Catalysis A: General 2008, 334 (1-2), 217-226.
    6. Tang, Y.-W.; Ma, G.-X.; Zhou, Y.-M.; Bao, J.-C.; Lu, L.-D.; Lu, T.-H., Electrocatalytic Oxidation of Ethanol on Pt/C Catalysts with Different Pt Particle Sizes. Acta Phys. -Chim. Sin. 2008, 24 (9), 1615-1619.
    7. 高逢時, 奈米科技. 科學發展 2005, 386期, 66-71.
    8. Mino, L.; Agostini, G.; Borfecchia, E.; Gianolio, D.; Piovano, A.; Gallo, E.; Lamberti, C., Low-dimensional Systems Investigated by X-ray Absorption Spectroscopy: A Selection of 2D, 1D And 0D Cases. Journal of Physics D: Applied Physics 2013, 46 (42), 423001.
    9. Mock, J. J.; Barbic, M.; Smith, D. R.; Schultz, D. A.; Schultz, S., Shape Effects in Plasmon Resonance of Individual Colloidal Silver Nanoparticles. The Journal of Chemical Physics 2002, 116 (15), 6755-6759.
    10. Willets, K. A.; Van Duyne, R. P., Localized Surface Plasmon Resonance Spectroscopy and Sensing. Annual Review of Physical Chemistry 2007, 58 (1), 267-297.
    11. Nikhil R. Jana, L. G., and Catherine J. Murphy, Seeding Growth for Size Control of 5-40 nm Diameter Gold Nanoparticles. Langmuir 2001, 17 (22), 6782-6786.
    12. John deMello, A. d., Microscale Reactors: Nanoscale Products. Lab on a Chip 2004, 4 (2), 11N.
    13. Lu, X.; Rycenga, M.; Skrabalak, S. E.; Wiley, B.; Xia, Y., Chemical Synthesis of Novel Plasmonic Nanoparticles. Annual Review of Physical Chemistry 2009, 60, 167-192.
    14. Marco Piumetti, F. F., Barbara Bonelli, Catalytically Active Sites And Their Complexity: A Micro-review. Chimica Oggi-Chemistry Today 2013, 31, 55-58.
    15. (a) Colmati, F.; Tremiliosi-Filho, G.; Gonzalez, E. R.; Berna, A.; Herrero, E.; Feliu, J. M., The Role of The Steps inThe Cleavage of The C-C Bond During Ethanol Oxidation on Platinum Electrodes. Physical chemistry chemical physics : PCCP 2009, 11 (40), 9114-9123; (b) Abd-El-Latif, A. A.; Mostafa, E.; Huxter, S.; Attard, G.; Baltruschat, H., Electrooxidation of Ethanol at Polycrystalline And Platinum Stepped Single Crystals: A Study by Differential Electrochemical Mass Spectrometry. Electrochimica Acta 2010, 55 (27), 7951-7960; (c) Lebedeva, N. P.; Koper, M. T. M.; Feliu, J. M.; Santen, R. A. v., Role of Crystalline Defects in Electrocatalysis Mechanism and Kinetics of CO Adlayer Oxidation on Stepped Platinum Electrodes. J. Phys. Chem. B 2002, 106, 12938-12947.
    16. Niu, W.; Xu, G., Crystallographic Control of Noble Metal Nanocrystals. Nano Today 2011, 6 (3), 265-285.
    17. Zhang, Q.; Deng, W.; Wang, Y., Effect of Size of Catalytically Active Phases in The Dehydrogenation of Alcohols And The Challenging Selective Oxidation of Hydrocarbons. Chemical communications 2011, 47 (33), 9275-92.
    18. Christopher, P.; Linic, S., Shape- and Size-Specific Chemistry of Ag Nanostructures in Catalytic Ethylene Epoxidation. ChemCatChem 2010, 2 (1), 78-83.
    19. Staykov, A.; Nishimi, T.; Yoshizawa, K.; Ishihara, T., Oxygen Activation on Nanometer-Size Gold Nanoparticles. The Journal of Physical Chemistry C 2012, 116 (30), 15992-16000.
    20. Janssens, T. V. W.; Clausen, B. S.; Hvolbæk, B.; Falsig, H.; Christensen, C. H.; Bligaard, T.; Nørskov, J. K., Insights into The Reactivity of Supported Au Nanoparticles: Combining Theory And Experiments. Topics in Catalysis 2007, 44 (1-2), 15-26.
    21. (a) Bezemer, G. L.; Bitter, J. H.; Kuipers, H. P. C. E.; Oosterbeek, H.; Holewijn, J. E.; Xu, X.; Kapteijn, F.; Dillen, A. J. v.; Jong, K. P. d., Cobalt Particle Size Effects in the Fischer-Tropsch Reaction Studied with Carbon Nanofiber Supported Catalysts. J. Am. Chem. Soc. 2006, 128, 3956-3964; (b) Somorjai, G. A.; Park, J. Y., Colloid Science of Metal Nanoparticle Catalysts in 2D and 3D Structures. Challenges of Nucleation, Growth, Composition, Particle Shape, Size Control and Their Influence on Activity and Selectivity. Top. Catal. 2008, 49, 126-135.
    22. Santen, R. A. V., Complementary Structure Sensitive And Insensitive Catalytic Relationships. Accounts of Chemical Research 2009, 42 (1), 57-66.
    23. Qin, Y.; Ji, X.; Jing, J.; Liu, H.; Wu, H.; Yang, W., Size Control over Spherical Silver Nanoparticles by Ascorbic Acid Reduction. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2010, 372 (1-3), 172-176.
    24. Mao, A.; Jin, X.; Gu, X.; Wei, X.; Yang, G., Rapid, Green Synthesis And Surface-Enhanced Raman Scattering Effect of Single-Crystal Silver Nanocubes. Journal of Molecular Structure 2012, 1021, 158-161.
    25. Sau, T. K.; Murphy, C. J., Room Temperature, High-Yield Synthesis of Multiple Shapes of Gold. Journal of the American Chemical Society 2004, 126 (28), 8648-8649.
    26. Niu, W.; Li, Z.-Y.; Shi, L.; Liu, X.; Li, H.; Han, S.; Chen, J.; Xu, G., Seed-Mediated Growth of Nearly Monodisperse Palladium Nanocubes with Controllable Sizes. Crystal Growth & Design 2008, 8 (12), 4440-4444.
    27. Zhang, Q.; Li, W.; Wen, L. P.; Chen, J.; Xia, Y., Facile synthesis of Ag nanocubes of 30 to 70 nm in edge length with CF(3)COOAg as a precursor. Chemistry 2010, 16 (33), 10234-9.
    28. Jensen, T. R.; Malinsky, M. D.; Haynes, C. L.; Duyne, R. P. V., Nanosphere Lithography: Tunable Localized Surface Plasmon Resonance Spectra of Silver Nanoparticles. J. Phys. Chem. B 2000, 104, 10549-10556.
    29. Jin, R.; Cao, Y.; Mirkin, C. A.; Kelly, K. L.; Schatz, G. C.; Zheng, J. G., Photoinduced Conversion of Silver Nanospheres to Nanoprisms. Science 2001, 294 (5548), 1901-3.
    30. Sun, Y.; Zhang, L.; Zhou, H.; Zhu, Y.; Sutter, E.; Ji, Y.; Rafailovich, M. H.; Sokolov, J. C., Seedless and Templateless Synthesis of Rectangular Palladium Nanoparticles. Chemistry of Materials 2007, 19 (8), 2065-2070.
    31. Xiong, Y.; Cai, H.; Wiley, B. J.; Wang, J.; Kim, M. J.; Xia, Y., Synthesis and Mechanistic Study of Palladium Nanobars and Nanorods. Journal of the American Chemical Society 2007, 129 (12), 3665-3675.
    32. Guan, Y.; Hensen, E. J. M., Ethanol Dehydrogenation by Gold Catalysts: The Effect of The Gold Particle Size And The Presence of Oxygen. Applied Catalysis A: General 2009, 361 (1-2), 49-56.

    下載圖示
    QR CODE