簡易檢索 / 詳目顯示

研究生: 林聖翔
Lin, Sheng-Hsiang
論文名稱: 具活性高自旋三價鐵中心介穩定鐵-氧中間物探討
Metastable Iron-Oxygen Intermediates with Active High-Spin Iron(III) Site
指導教授: 李位仁
Lee, Way-Zen
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 70
中文關鍵詞: 超氧化鐵錯合物介穩定中間物
英文關鍵詞: iron–superoxo, aldehyde deformaylation, metastable intermediates, iron–μ–oxo
DOI URL: https://doi.org/10.6345/NTNU202202831
論文種類: 學術論文
相關次數: 點閱:134下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 各種鐵–氧中間物長期以來被認為參與酵素催化氧合及氧化反應過程中;其中,iron–superoxo是路徑中重要的過程。實驗室先前的研究發現Fe(BDPP)在−80 °C下將氧氣活化形成iron–superoxo中間物,並且可以進行氫原子轉移反應。另外,我們亦嘗試不同的反應,發現有別於文獻先前關於aldehyde deformylation報導,經由動力學實驗帶入Hammett equation得到負的ρ值,代表所經過的反應途徑有別於以往,非傳統的親核反應。另一方面,我們利用Fe(BDPP)與DMPO反應,展示文獻上第一個直接藉由iron–superoxo中間物形成iron–alkylperoxo中間物的模型分子。至今,有許多實驗及光譜證據顯示iron–alkylperoxo中間物可以經由O–O斷鍵形成高價Fe=O物種。使用isopropyl 2-iodoxybenzoate (IBX-ester) 與Fe(BDPP)反應嘗試合成Fe=O物種,但從UV–vis滴定實驗顯示鐵:氧比為2:1。稍後我們發現此介穩定物種對於受質並無反應發生,但若先預混入受質可鑑定出25%的產物,由於無法單離出此物種,故藉由Evans method搭配密度泛函理論了解其特性,推測此介穩定物質非Fe=O物種,而是相對穩定的FeIII2(μ–O)中間物。

    Several iron–oxygen intermediates have long been known participating in enzymatic oxygenation and oxidation processes. The initial processes of the reactions is the formation of iron–superoxide. In our earlier work about activation of dioxygen, an end-on iron–superoxo intermediate was formed from the reaction of Fe(BDPP) compound with dioxygen at −80 °C. The iron–superoxo intermediate can proceed hydrogen atom abstraction. To extend the reaction diversity, the iron–superoxo intermediate was reacted with aldehyde deformaylation bearing unique negative ρ value analyzed by Hammett equation. The negative ρ value suggests the reaction does not fit the nucleophilic trend. On the other hand, we demonstrated the first iron–alkylperoxo intermediate directly via iron–superoxo intermediate reacting with DMPO. There are strong evidence in literature that conversion of iron(III)–alkylperoxo complex to its corresponding iron–oxo complex occurs via O–O bond cleavage. Reacting Fe(BDPP) with isopropyl 2-iodoxybenzoate (IBX-ester) at −80 °C gave a metastable intermediate. The UV–vis titration experiments revealed that the intermediate has iron to oxygen atom of 2:1 ratio. From reactivity tests the resulting species unexpectedly shows no reactivity towards neither hydrogen atom abstraction nor oxygen atom transfer reaction. Only when the hydrogen donating substrate was premixed before IBX-ester added, about 25% product is analyzed. These results rule out the assignment of iron–oxo species but imply an inert intermediate postulated to be a dimeric Fe–O–Fe species. Since the intermediate could not be isolated due to its instability, Evans method of the resulting solution and DFT calculations were utilized to identify the proposed intermediate.

    中文摘要 iii Abstract iv 圖索引 v 表索引 vii 第一章 緒論 1 1-1 鐵−氧中間體概論 (Iron−Oxygen Intermediates) 4 1-2 超價碘化物概述 13 1-3 相關研究提要 18 1-3.1 高價Fe=O物種 18 1-3.2 FeIII–superoxo反應性相關研究 23 第二章 實驗部分 27 2-1.1實驗儀器 27 2-1.2溶劑 28 2-1.3藥品 29 2-2 錯合物製備 33 [FeII(BDPP)] (1) 33 2-3 FeIII–superoxo反應性之實驗操作 34 2-4 錯合物1與氧原子轉移試劑反應實驗及滴定實驗操作 38 2-5 Masked Fe=O反應性之實驗操作 39 2-6密度泛函理論 40 2-7低溫質譜 41 2-8高解析電灑游離式質譜 41 第三章 結果與討論 42 3-1 Masked Fe=O反應性探討 42 3-1.1錯合物1與三種氧原子轉移試劑反應機制探討 42 3-1.2氫原子轉移反應 (HAT) 47 3-1.3 氧原子轉移反應 (OAT) 49 3-2 FeIII–superoxo反應性探討 50 第四章 結論與展望 62 4-1總結 62 4-2研究計畫 65 參考文獻 67

    1. Abdullah Ozer, Richard K Bruick Nature Chemical Biology 2007, 3, 144–153
    2. Rahul Banerjee, Yegor Proshiyakov, John D. Lipscomb, Denis A. Proshlyakov Nature 2015, 518, 431–434
    3. Simon E. V. Phillips Nature 1978, 273, 247–248
    4. Chien-Wei Chiang, Scott T. Kleespies, Heather D. Stout, Katlyn K. Meier, Po-Yi Li, Emile L. Bominaar, Lawrence Que, Jr., Eckard Münck, Way-Zen Lee J. Am. Chem. Soc. 2014, 136, 10846–10849
    5. Seungwoo Hong, Kyle D. Sutherlin, Jiyoung Park, Eunji Kwon, Maxime A. Siegler, Edward I. Solomon, Wonwoo Nam Nat. Comm. 2014, 5, No. 5440
    6. Frédéric Oddon, Yosuke Chiba, Jun Nakazawa, Takehiro Ohta, Takashi Ogura, Shiro Hikichi Angew. Chem. Int. Ed. 2015, 54, 7336–7339
    7. Piotr J. Mak, Ilia G. Denisov, Doreen Victoria, Thomas M. Makris, Tianjing Deng, Stephen G. Sligar, James R. Kincaid J. Am. Chem. Soc. 2007, 129, 6382–6383
    8. Elena G. Kovaleva, John D. Lipscomb Science 2007, 316, 453–456
    9. Jack E. Baldwin, Mark Bradley Chem. Rev. 1990, 90, 1079–1088
    10. Alan L. Balch, Yee-Wai Chan, Ru-Jen Cheng, Gerd N. La Mar, Lechoslaw Latos-Grazynski, Mark W. Renner J. Am. Chem. Soc. 1984, 106, 7779–7785
    11. Lei V. Liu, Seungwoo Hong, Jaeheung Cho, Wonwoo Nam, Edward I. Solomon J. Am. Chem. Soc. 2013, 135, 3286−3299
    12. John. T. Groves, Robert C. Haushalter, Mikio Nakamura, Thomas E. Nemo, B. J. Evans J. Am. Chem. Soc. 1981, 103, 2884−2886
    13. Cora E. MacBeth, Adina P. Golombek, Victor G. Young Jr., Cheng Yang, Krzysztof Kuczera, Michael P. Hendrich, A. S. Borovik Science 2000, 289, 938−941
    14. Jan-Uwe Rohde, Jun-Hee In, Mi Hee Lim,1 William W. Brennessel, Michael R. Bukowski, Audria Stubna, Eckard Münck, Wonwoo Nam, Lawrence Que Jr. Science 2003, 299, 1037−1039
    15. Filipe Tiago de Oliveira, Arani Chanda, Deboshri Banerjee, Xiaopeng Shan, Sujit Mondal, Lawrence Que Jr., Emile L. Bominaar, Eckard Münck, Terrence J. Collins Science 2007, 315, 835−838
    16. Christian Rocaboy, John A. Gladysz Chem. Eur. J. 2003, 9, 88−95
    17. Masahito Ochiai, Takuya Sueda, Kazunori Miyamoto, Paul Kiprof, Viktor V. Zhdankin Angew. Chem. Int. Ed. 2006, 118, 8383–8386
    18. Adonis Stassinopoulos, John P. Caradoma J. Am. Chem. Soc. 1990, 112, 7071–7073
    19. Adrian M. Daly, Marie F. Renehan, Declan G. Gilheany Org. Lett. 2001, 3, 663–666
    20. Eric Rose, Bruno Andrioletti, Samia Zrig, Mélanie Quelquejeu-Ethéve Chem. Soc. Rev. 2005, 34, 573–583
    21. (a) Anders Lennartson, Christine J. McKenzie Angew. Chem. Int. Ed. 2012, 51, 6767–6770 (b) Chunlan Wang, Takuya Kurahashi, Hiroshi Fujii Angew. Chem. Int. Ed. 2012, 51, 7809–7811 (c) Seungwoo Hong, Bin Wang, Mi Sook Seo, Yong-Min Lee, Myoung Jin Kim, Hyung Rok Kim, Takashi Ogura, Ricardo Garcia-Serres, Martin Clmancey, Jean-Marc Latour, Wonwoo Nam Angew. Chem. Int. Ed. 2014, 53, 6388–6392
    22. Thomas Wirth Angew. Chem. Int. Ed. 2001, 40, 2812–2814
    23. Ivan M. Geraskin, Matthew W. Luedtke, Heather M. Neu, Victor N. Nemykin , Viktor V. Zhdankin Tetrahedron Letters 2008, 49, 7410–7412
    24. Bin Wang, Yong-Min Lee, MiSook Seo, Wonwoo Nam Angew. Chem. Int. Ed. 2015, 54, 11740 –11744
    25. Wanhua Ye Douglas M. Ho, Simone Friedle, Taryn D. Palluccio, and Elena V. Rybak-Akimova Inorg. Chem. 2012, 51, 5006–5021
    26. Yutaka Hitomi, Kengo Arakawa and Masahito Kodera Chem. Commun., 2014, 50, 7485–7487
    27. Leland R. Widger, Casey G. Davies, Tzuhsiung Yang, Maxime A. Siegler, Oliver Troeppner, Guy N. L. Jameson, Ivana Ivanović-Burmazović, David P. Goldberg J. Am. Chem. Soc. 2014, 136, 13542−13545
    28. Binh Khanh Mai, Yongho Kim Inorg. Chem. 2016, 55, 3844−3852
    29. Shengfa Ye, Christoph Riplinger, Andreas Hansen, Carsten Krebs, J. Martin Bollinger, Jr., Frank Neese Chem. Eur. J. 2012, 18, 6555 – 6567
    30. Patrick J. Donoghue, Aalo K. Gupta, David W. Boyce, Christopher J. Cramer, William B. Tolman J. Am. Chem. Soc. 2010, 132, 15869–15871
    31. Paolo Pirovano, Adriana M. Magherusan, Ciara McGlynn, Andrew Ure, Amy Lynes, and Aidan R. McDonald Angew. Chem. Int. Ed. 2014, 126, 6056 –6060
    32. Amanda R. Corcos, Omar Villanueva, Richard C. Walroth, Savita K. Sharma, John Bacsa, Kyle M. Lancaster, Cora E. MacBeth, John F. Berry J. Am. Chem. Soc. 2016, 138, 1796−1799
    33. Way-Zen Lee, Chien-Wei Chiang, Tsung-Han Lin, Ting-Shen Kuo Chem. Eur. J. 2012, 18, 50–53
    34. Dainius Macikenas, Ewa Skrzypczak-Jankun, John D. Protasiewicz J. Am. Chem. Soc. 1999, 121, 7164–7165
    35. Viktor V. Zhdankin, Dmitry N. Litvinov, Alexey Y. Koposov, Thanh Luu, Michael J. Ferguson, Robert McDonald, Rik R. Tykwinski Chem. Commun., 2004, 40, 106–107
    36. Dario C Ramirez, Sandra E Gomez-Mejiba, Ronald P Mason Nature Protocols 2007, 2, 512–522
    37. Tatsuya Fujii, Syuhei Yamaguchi, Yasuhiro Funahashi, Tomohiro Ozawa, Takehiko Tosha, Teizo Kitagawa, Hideki Masuda Chem. Commun., 2006, 42, 4428–4430
    38. Markus R. Anneser, Stefan Haslinger, Alexander Pöthig, Mirza Cokoja, Valerio D’Elia, Manuel P. Högerl, Jean-Marie Bassetb, Fritz E. Kühn Dalton Trans., 2016, 45, 6449–6455
    39. (a) Jamespandi Annaraj, Yumi Suh, Mi Sook Seo, Sun Ok Kim, Wonwoo Nam Chem. Commun., 2005, 36, 4529–4531 (b) Jaeheung Cho, Sujin Jeon , Samuel A. Wilson, Lei V. Liu, Eun A. Kang, Joseph J. Braymer, Mi Hee Lim, Britt Hedman, Keith O. Hodgson, Joan Selverstone Valentine, Edward I. Solomon, Wonwoo Nam Nature 2011, 478, 502–505 (c) Youngrae Jo, Jamespandi Annaraj, Mi Sook Seo, Yong-Min Lee, Sung Yeon Kim, Jaeheung Cho, Wonwoo Nam Journal of Inorganic Biochemistry 2008, 102, 2155–2159 (d) Jaeheung Cho, Ritimukta Sarangi, Jamespandi Annaraj, Sung Yeon Kim, Minoru Kubo, Takashi Ogura, Edward I. Solomon, Wonwoo Nam Nat. Chem. 2009, 1, 568–572

    下載圖示
    QR CODE