研究生: |
劉家凱 Liu, Chia-Kai |
---|---|
論文名稱: |
K頻帶互補式金氧半功率放大器設計 Design of K-band CMOS Power Amplifiers |
指導教授: |
蔡政翰
Tsai, Jen-Han |
學位類別: |
碩士 Master |
系所名稱: |
電機工程學系 Department of Electrical Engineering |
論文出版年: | 2015 |
畢業學年度: | 103 |
語文別: | 中文 |
論文頁數: | 93 |
中文關鍵詞: | K頻段 、功率放大器 、變壓器 、互補式金屬氧化半導體 、功率合成技術 |
英文關鍵詞: | K-band, power amplifier, transformer, CMOS, power combining techniques |
論文種類: | 學術論文 |
相關次數: | 點閱:139 下載:7 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
第一個電路為變壓器功率結合技術之K頻帶功率放大器,採用半圈變壓器 (Half-turn Transformer)實現功率結合與阻抗轉換以達到節省面積,量測結果在23.5 GHz時,增益為12 dB,飽和輸出功率(P_sat)為22.5 dBm,1dB增益壓縮輸出功率(OP_1dB)為18.1 dBm,最高功率輔助效率(PAE)為21.8%,晶片佈局面積為0.29 mm^2。
第二個電路為變壓器電流結合技術之K頻帶功率放大器,延續第一個設計之功率放大器,運用變壓器電流結合技術(Current Combining Transformer)來提升輸出功率,將功率放大單元直接並聯在進行匹配,而為了要提高增益,採用兩級功率放大器進行設計,量測結果在23 GHz時,增益為19.5 dB,飽和輸出功率(P_sat)為24.9 dBm,1 dB增益壓縮輸出功率(OP_1dB)為20.6 dBm,最高功率輔助效率(PAE)為17.0%,晶片佈局面積為0.97 mm^2。
The first circuit is K-band power amplifier with transformer combining technique which uses half-turn transformer to implement power combining and impedance transformations, and to reduce size of chip. The PA achieves measured small-signal gain ("S" _"21" ) of 12 dB and maximum saturation output power ("P" _"sat" ) of 22.5 dBm, the measured output 1-dB compression point (〖"OP" 〗_"1dB" ) of 18.1 dBm and peak power-added efficiency (PAE) is 21.8 % at 23.5 GHz. The chip area is 0.29 mm^2.
Recall that in first design, the second circuit is power amplifier using current combining transformer technique to increase output power. In order to reach higher gain, this thesis use 2-stage power amplifier design. The PA achieves measured "S" _"21" of 19.5 dB and "P" _"sat" of 24.9 dBm, the 〖"OP" 〗_"1dB" of 20.6 dBm and PAE of 17 % at 23 GHz. The chip area including is 0.97 mm^2.
[1] J.-L. Kuo, Z.-M. Tsai, and H. Wang, “A 19.1-dBm Fully-Integrated 24 GHz Power Amplifier Using 0.18-μm CMOS Technology,” European Conference on Wireless Technology (EuWiT), Amsterdam, Oct. 2008, pp. 234-237.
[2] H. Portela, V. Subramanian, and G. Boeck, “Fully integrated high efficiency K-band PA in 0.18 μm CMOS Technology,” SBMO/IEEE MTT-S International Microwave and Optoelectronics Conference (IMOC), Belem, Nov. 2009, pp. 393-396.
[3] J.-L. Kuo, and H. Wang, “A 24 GHz CMOS Power Amplifier Using Reversed Body Bias Technique to Improve Linearity and Power Added Efficiency,” IEEE MTT-S International Microwave Symposium Digest (MTT), Montreal, June 2012, pp. 1-3.
[4] Y.-N. Jen, J.-H. Tsai, C.-T. Peng, and T.-W. Huang, “A 20 to 24 GHz +16.8 dBm Fully Integrated Power Amplifier Using 0.18μm CMOS Process,” IEEE Microwave and Wireless Components Letters, vol. 19, no. 1, pp. 42-44, Jan. 2009.
[5] P.-C. Huang, L.-L. Kuo, Z.-M. Tsai, K.-Y. Lin, and H. Wang, “A 22-dBm 24-GHz PowerAmplifier Using O.18-μm CMOS Technology,” IEEE MTT-S International Microwave Symposium Digest (MTT), Anaheim, May 2010, pp. 248-251.
[6] C.-C. Hung, J.-L. Kuo, K.-Y. Lin, and H. Wang, “A 22.5-dB Gain, 20.1-dBm Output Power K-band Power Amplifier in 0.18-μm CMOS,” IEEE Radio Frequency Integrated Circuits Symposium (RFIC) Symposium, Anaheim, May 2010, pp. 557-560.
[7] Y. Kawano, A. Mineyama, T. Suzuki, M. Sato, T. Hirose, and K. Joshin, “A Fully-Integrated K-band CMOS Power Amplifier with Psat of 23.8 dBm and PAE of 25.1 %,” IEEE Radio Frequency Integrated Circuits (RFIC) Symposium , Baltimore, June 2011, pp. 1-4.
[8] Y.-C. Liu, C.-T. Chan, and S.-H. Hsu, “A K-Band Power Amplifier with Adaptive Bias in 90-nm CMOS,” European Microwave Conference (EuMC), Rome, Oct. 2014, pp. 1376-1379
[9] C.-C. Kuo, Y.-H. Lin, H.-C. Lu, and H. Wang, “A K-band Compact Fully Integrated Transformer Power Amplifier in 0.18-μm CMOS,” Asia-Pacific Microwave Conference Proceedings (APMC), Seoul, Nov. 2013, pp. 597-599
[10] J.-F. Yeh, Y.-F. Hsiao, J.-H. Tsai, and T.-W. Huang, “MMW Ultra-Compact N-Way Transformer PAs Using Bowtie-Radial Architecture in 65-nm CMOS,” IEEE Microwave and Wireless Components Letters, vol. 25, no. 7, pp. 460-462, July 2015.
[11] J.-H. Chen, S. R. Helmi, R. Azadegan, F. Aryanfar, and S. Mohammadi, “A Broadband Stacked Power Amplifier in 45-nm CMOS SOI Technology,” IEEE Journal of Solid-State Circuits, vol. 48, no. 11, pp.2775-2784, Nov. 2013.
[12] I. Aoki, S. D. Kee, D. B. Rutledge, and A. Hajimiri, “Distributed active transformer─A new power-combining and impedance-transformation technique,” IEEE Transactions on Microwave Theory and Techniques, vol. 50, no. 1, pp. 316-331, Jan. 2002.
[13] K.- H. An1, Y. Kim, O. Lee, K.- S. Yang, H. Kim, W.-Y. Woo, J.- J. Chang, C.-H. Lee, H. Kim, and J. Laskar, “A Monolithic Voltage-Boosting Parallel-Primary Transformer Structures for Fully Integrated CMOS Power Amplifier Design,” IEEE Radio Frequency Integrated Circuits (RFIC) Symposium, Honolulu, June 2007, pp.419-422
[14] J.-F. Yeh, L.-L. J.-H. Tsai, and T.-W. Huang, “A 60-GHz Power Amplifier Design Using Dual-Radial Symmetric Architecture in 90-nm Low-Power CMOS,” IEEE Transactions on Microwave Theory and Techniques, vol.61, no.3, pp.1280-1290, March 2013.
[15] J. Kim, W. Kim, H. Jeon, Y.-Y. Huang, Y.-C. Yoon, H. Kim, C.-H. Lee, and K. T. Kornegay, “A Fully-Integrated High-Power Linear CMOS Power Amplifier With a Parallel-Series Combining Transformer,” IEEE Journal of Solid-State Circuits, vol.47, no.3, pp.599-61, Feb. 2012.
[16] C.-W. Kuo, H.-K. Chiou, and H.-Y. Chung, “An 18 to 33 GHz Fully-Integrated Darlington Power Amplifier With Guanella-Type Transmission-Line Transformers in 0.18-μm CMOS Technology,” IEEE Microwave and Wireless Components Letters, vol. 23, pp. 668-670, Oct. 2014.
[17] B. Razavi, RF Microelectronics, 2nd edition. Upper Saddle River, NJ: Prentic Hall, 2012.
[18] A. Komijani, A. Natarajan, and A. Hajimiri, “A 24-GHz, +14.5-dBm Fully Integrated Power Amplifier in 0.18-μm CMOS,” IEEE Journal of Solid-State Circuits, vol.40, no.9, pp.1901-1908, Sept. 2005.
[19] J.-W. Lee and J. Lin, “Series-Biased CMOS Power Amplifiers Operating at High Voltage for 24 GHz Radar Applications,” International SoC Design Conference (ISOCC), Seoul, Nov. 2010, pp.360-363.
[20] A. Natarajan, A. Komijani, and A. Hajimiri, “A Fully Integrated 24-GHz Phased-Array Transmitter in CMOS,” International SoC Design Conference (ISOCC), IEEE Journal of Solid-State Circuits, vol.40, no.12, pp.2502-2514, Dec. 2005.
[21] A. Vasylyev, P. Weger and W. Simbu¨rger, “Ultra-broadband 20.5–31 GHz monolithically-integrated CMOS power amplifier,” International SoC Design Conference (ISOCC), Electronics Letters, vol.41, no.23, pp.1280-1281, Nov. 2005.
[22] C.-Y. Wu, S.-W. Hsu, and W.-C. Wang, “A 24-GHz CMOS Current-Mode Power Amplifier with High PAE and Output Power,” IEEE International Symposium on Circuits and Systems(ISCAS), New Orleans, May 2007, pp.2866-2869.
[23] J.-F. Yeh, J.-H. Tsai, and T.-W. Huang, “A Multi-mode 60-GHz Power Amplifier with a Novel Power Combination Technique,” IEEE Radio Frequency Integrated Circuits (RFIC) Symposium, Montreal, June 2012, pp. 61-64.
[24] K.W. Kobayashi, A.K. Oki, and L.-W. Yang, A. Gutierrez-Aitken, P.Chin, Don Sawdai, W. Okamura, J. Lester, E. Kaneshiro, “A 0.5 Watt-40 % PAE InP Double Heterojunction Bipolar Transistor K-band MMIC Power Amplifier,” International Indium Phosphide and Related Materials, Williamsburg, May 2000, pp. 250-253.