簡易檢索 / 詳目顯示

研究生: 林煜哲
Lin, Yu-Zhe
論文名稱: 應用於第五代行動通訊之28 GHz與38 GHz之功率放大器研究
Research on 28 GHz and 38 GHz Power Amplifiers for Fifth Generation Wireless Communication System
指導教授: 蔡政翰
Tsai, Jen-Han
學位類別: 碩士
Master
系所名稱: 電機工程學系
Department of Electrical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 133
中文關鍵詞: Ka頻帶功率放大器變壓器功率合成技術互補式金氧半
英文關鍵詞: Ka-band, power amplifier, transformer, power combining techniques, CMOS
DOI URL: https://doi.org/10.6345/NTNU202202536
論文種類: 學術論文
相關次數: 點閱:126下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 第一個電路為利用變壓器功率合成技術之Ka頻帶之功率放大器,使用半圈之變壓器實現功率結合與阻抗轉換以達到節省晶片面積,在量測頻率28 GHz時,增益為10.13 dB,飽和輸出功率為21.69 dBm,OP1dB為16.48 dBm,最大功率附加效率Peak PAE為19.36 %,整體晶片佈局面積為0.29 mm2。
    第二個電路為變壓器電流合成技術之Ka頻帶功率放大器,為了提升功率放大器的增益,採用二級功率放大器進行設計,再使用變壓器電流合成技術提升輸出功率,量測結果在28 GHz時增益為14.07 dB,飽和輸出功率為23.9 dBm,OP1dB為19.07 dBm,最高功率附加效率為13 %,晶片佈局面積為0.9 mm2。
    第三個電路為利用直接並聯功率合成瓦級功率輸出之Ka頻帶功率放大器,為了達到高增益,透過三級放大器進行設計,並使用直接並聯功率合成提升輸出功率,量測結果在38GHz時增益為19.6 dB,飽和輸出功率為28.4 dBm,OP1dB為27.6 dBm,最高功率附加效率為22.92 %,整體晶片佈局面積為5.22 mm2。

    The first circuit is Ka-band power amplifier with transformer combining technique which use half-turn transformer to implement power combining and impedance transformations, and to reduce size of chip. The PA achieves measured small-signal gain (S21) of 10.13 dB and maximum saturation output power (Psat) of 21.69 dBm, the OP1dB of 16.48 dBm and peak power-added efficiency (PAE) is 19.36 % at 28 GHz. The chip area including is 0.29 mm2.
    The second circuit is Ka-band power amplifier using current combining transformer technique. In order to reach higher gain, this thesis use 2-stage power amplifier design, and use current combining technique to increase output power. The PA achieves measured S21 of 14.07 dB and Psat of 23.9 dBm, the OP1dB of 19 dBm and PAE of 13 % at 28 GHz. The chip area including is 0.9 mm2.
    The third circuit is Ka-band power amplifier using directly power combining technique. In order to reach higher gain, this thesis use 3-stage power amplifier design, and use directly power combining technique to increase output power. The PA achieves measured S21 of 19.6 dB and Psat of 28.4 dBm, the OP1dB of 27.6 dBm and PAE of 22.92 % at 238 GHz. The chip area including is 5.22 mm2.

    摘要 I All ABSTRACT III 致謝 V 目錄 VII 圖目錄 XI 表目錄 XVII 第一章 緒論 1 1.1 研究背景與動機 1 1.2 文獻探討 1 1.3 研究成果 4 1.4 論文架構 5 第二章 功率放大器基本介紹 7 2.1 概述 7 2.2 功率放大器之重要設計參數 8 2.2.1 功率(Power) 8 2.2.2 效率(Efficiency) 9 2.2.3 線性度(Linearity) 9 2. 3 功率放大器種類 14 2.3.1 A類功率放大器(Class-A) 15 2.3.2 B類功率放大器(Class-B) 16 2.3.3 C類功率放大器(Class-C) 18 第三章 Half-turn變壓器功率結合技術之Ka頻帶功率放大器 19 3.1 簡介 19 3.1 變壓器功率結合技術之Ka頻帶功率放大器 20 3.2.1 偏壓分析與選擇 20 3.2.2 組態選擇 22 3.2.3 電晶體尺寸分析與選擇 23 3.2.4 變壓器原理 27 3.2.5 輸出匹配網路設計 28 3.2.6 輸入匹配網路設計 38 3.2.7 旁路電容設計 43 3.3 模擬結果 46 3.4 功率放大器之量測結果 49 3.5 總結 54 第四章 變壓器電流結合技術之Ka頻帶功率放大器 57 4.1 簡介 57 4.2 變壓器電流合成技術之Ka頻帶功率放大器設計 58 4.2.1 變壓器電流合成技術效率 58 4.2.2 驅動級設計 60 4.2.3 級間匹配網路設計 67 4.2.4 變壓器電流合成技術之功率放大器輸出匹配網路設計 69 4.2.5 變壓器電流合成技術之功率放大器輸出匹配網路設計 75 4.3 模擬結果 83 4.4 功率放大器之量測結果 87 4.6 總結 91 第五章 38GHz 瓦級功率輸出三級功率放大器設計 93 5.1 簡介 93 5.2 38GHz 瓦級功率輸出三級功率放大器設計 94 5.2.1 偏壓分析與選擇 94 5.2.2 電晶體尺寸分析與選擇 96 5.2.3 匹配網路設計 100 5.2.4 旁路電容設計 106 5.3 模擬結果 108 5.4 功率放大器之量測結果 111 5.5 問題與討論 119 5.6 總結 123 第六章 結論 125 參考文獻 127 自傳 133 學術成就 133

    [1] H. Alsuraisry, S. T. Yen, J. H. Tsai and T. W. Huang, “Ka-band up-link CMOS/GaAs power amplifier design for satellite-based wireless sensor,” Topical Workshop on Internet of Space (TWIOS), Phoenix, AZ, March 2017, pp. 1-3.
    [2] H. Portela, V. Subramanian and G. Boeck, “Fully integrated high efficiency K-band PA in 0.18 µm CMOS technology,”2009 SBMO/IEEE MTT-S International Microwave and Optoelectronics Conference (IMOC), Belem, Nov. 2009, pp. 393-396.
    [3] Y. N. Jen, J. H. Tsai, C. T. Peng and T. W. Huang, “A 20 to 24 GHz +16.8 dBm Fully Integrated Power Amplifier Using 0.18 μm CMOS Process,”IEEE Microwave and Wireless Components Letters, vol. 19, no. 1, pp. 42-44, Jan. 2009.
    [4] Y. Huang, R. Zhang and C. Shi, “A fully-integrated Ka-band CMOS power amplifier with Psat of 20 dBm and PAE of 19%,”2016 IEEE International Conference on Ubiquitous Wireless Broadband (ICUWB), Nanjing, Dec. 2016, pp. 1-4.
    [5] C. C. Kuo, Y. H. Lin, H. C. Lu and H. Wang, “A K-band compact fully integrated transformer power amplifier in 0.18-μm CMOS,” Asia-Pacific Microwave Conference Proceedings (APMC), Seoul,Nov. 2013, pp. 597-599.
    [6] C. C. Hung, J. L. Kuo, K. Y. Lin and H. Wang, “A 22.5-dB gain, 20.1-dBm output power K-band power amplifier in 0.18-µm CMOS,” 2010 IEEE Radio Frequency Integrated Circuits Symposium, Anaheim, CA, May 2010, pp. 557-560.
    [7] J. H. Chen, S. R. Helmi, R. Azadegan, F. Aryanfar and S. Mohammadi, “A Broadband Stacked Power Amplifier in 45-nm CMOS SOI Technology,” in IEEE Journal of Solid-State Circuits, vol. 48, no. 11, Nov. 2013, pp. 2775-2784.

    [8] I. Aoki, S. D. Kee, D. B. Rutledge and A. Hajimiri, “Distributed active transformer-a new power-combining and impedance-transformation technique,” in IEEE Transactions on Microwave Theory and Techniques, vol. 50, no. 1, Jan 2002, pp. 316-331.
    [9] J. W. Lee and S. M. Heo, “A 27 GHz, 14 dBm CMOS Power Amplifier Using 0.18 µm Common-Source MOSFETs,” IEEE Microwave and Wireless Components Letters, vol. 18, no. 11, Nov. 2008, pp. 755-757.
    [10] S. Shakib, H. C. Park, J. Dunworth, V. Aparin and K. Entesari, “A Highly Efficient and Linear Power Amplifier for 28-GHz 5G Phased Array Radios in 28-nm CMOS,” in IEEE Journal of Solid-State Circuits, vol. 51, no. 12, Dec. 2016, pp. 3020-3036.
    [11] T. P. Wang, Z. W. Li and C. Y. Hsueh, “A high-Psat high-OP1dB high-power-density fully integrated Ka-band power amplifier in 0.18-µm CMOS,” IEEE International Conference on Wireless Information Technology and Systems (ICWITS), Maui, HI, Dec. 2012, pp. 1-4.
    [12] C. W. Kuo, H. K. Chiou and H. Y. Chung, “An 18 to 33 GHz Fully-Integrated Darlington Power Amplifier With Guanella-Type Transmission-Line Transformers in 0.18 µm CMOS Technology,” in IEEE Microwave and Wireless Components Letters, vol. 23, no. 12, Dec. 2013, pp. 668-670.
    [13] Keon-Shik Kong, B. Nguyen, S. Nayak and Ming-Yih Kao, “Ka-band MMIC high power amplifier (4W at 30GHz) with record compact size,” IEEE Compound Semiconductor Integrated Circuit Symposium, 2005. CSIC '05., Nov. 2005, pp. 4.
    [14] N. Hosseinzadeh and A. Medi, “Wideband 5 W Ka-Band GaAs Power Amplifier,” in IEEE Microwave and Wireless Components Letters, vol. 26, no. 8, Aug. 2016, pp. 622-624.

    [15] D. P. Nguyen, T. Pham, B. L. Pham and A. V. Pham, “A High Efficiency High Power Density Harmonic-Tuned Ka Band Stacked-FET GaAs Power Amplifier,” IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS), Austin, TX, Oct. 2016, pp. 1-4.
    [16] F. Y. Colomb and A. Platzker, “2 and 4 watt Ka-band GaAs PHEMT power amplifier MMICs,” IEEE MTT-S International Microwave Symposium Digest, 2003, Philadelphia, PA, USA, June. 2003, pp. 843-846 vol.2.
    [17] J. Kim et al., “A Fully-Integrated High-Power Linear CMOS Power Amplifier With a Parallel-Series Combining Transformer,” IEEE Journal of Solid-State Circuits, vol. 47, no. 3, March 2012, pp. 599-614.
    [18] T. P. Wang, Z. W. Li and C. Y. Hsueh, “A high-Psat high-OP1dB high-power-density fully integrated Ka-band power amplifier in 0.18-µm CMOS,” IEEE International Conference on Wireless Information Technology and Systems (ICWITS), Maui, HI, Nov.2012, pp. 1-4.
    [19] S. Shakib, H. C. Park, J. Dunworth, V. Aparin and K. Entesari, “A Highly Efficient and Linear Power Amplifier for 28-GHz 5G Phased Array Radios in 28-nm CMOS,” IEEE Journal of Solid-State Circuits, vol. 51, no. 12, Dec. 2016, pp. 3020-3036.
    [20] S. H. Hung, K. W. Cheng and Y. H. Wang, “An Ultra-Broadband Subharmonic Mixer With Distributed Amplifier Using 90-nm CMOS Technology,” IEEE Transactions on Microwave Theory and Techniques, vol. 61, no. 10, Oct. 2013, pp. 3650-3657.
    [21] J. H. Chen, S. R. Helmi and S. Mohammadi, “A fully-integrated Ka-band stacked power amplifier in 45nm CMOS SOI technology,” IEEE 13th Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems, Austin, TX, Jan. 2013, pp. 75-77.
    [22] K. W. Kobayashi et al., “A 0.5 watt-40% PAE InP double heterojunction bipolar transistor K-band MMIC power amplifier,” International Conference on Indium Phosphide and Related Materials, Williamsburg, VA, May 2000, pp. 250-253.
    [23] J. F. Yeh, Y. F. Hsiao, J. H. Tsai and T. W. Huang, “MMW Ultra-Compact N-Way Transformer PAs Using Bowtie-Radial Architecture in 65-nm CMOS,” in IEEE Microwave and Wireless Components Letters, vol. 25, no. 7, July 2015, pp. 460-462.
    [24] D. P. Nguyen, T. Nguyen and A. V. Pham, “Development of a highly linear Ka-band power amplifier using second harmonic injection linearization,” 2016 46th European Microwave Conference (EuMC), London, Oct. 2016, pp. 835-838.
    [25] P. Blount, S. Huettner and B. Cannon, “A High Efficiency, Ka-Band Pulsed Gallium Nitride Power Amplifier for Radar Applications,” 2016 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS), Austin, TX, Oct. 2016, pp. 1-4.
    [26] R. Leblanc et al., “6W Ka Band Power Amplifier and 1.2dB NF X-Band Amplifier Using a 100nm GaN/Si Process,” 2016 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS), Austin, TX, Oct. 2016, pp. 1-4.
    [27] P. G. Courtney, J. Zeng, T. Tran, H. Trinh and S. Behan, “120W Ka Band Power Amplifier Utilizing GaN MMICs and Coaxial Waveguide Spatial Power Combining,” 2015 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS), New Orleans, LA, Oct. 2015, pp. 1-4.
    [28] S. Din, M. Wojtowicz and M. Siddiqui, “High power and high efficiency Ka band power amplifier,” 2015 IEEE MTT-S International Microwave Symposium, Phoenix, AZ, May 2015, pp. 1-4.

    [29] J. M. Schellenberg, “1 and 2 watt MMIC power amplifiers for commercial K/Ka-band applications,” 2002 IEEE MTT-S International Microwave Symposium Digest (Cat. No.02CH37278), Seattle, WA, USA, June 2002, pp. 445-448 vol.1.
    [30] A. Bessemoulin et al., “1 watt broad Ka-band ultra small high power amplifier MMICs using 0.25µm GaAs PHEMTs,” 24th Annual Technical Digest Gallium Arsenide Integrated Circuit (GaAs IC) Symposiu, Monterey, California, USA, 2002, pp. 40-43.
    [31] P. C. Huang, Z. M. Tsai, K. Y. Lin and H. Wang, “A 17–35 GHz Broadband, High Efficiency PHEMT Power Amplifier Using Synthesized Transformer Matching Technique,” in IEEE Transactions on Microwave Theory and Techniques, vol. 60, no. 1, Jan. 2012, pp. 112-119.
    [32] K. K. S. Kong et al., “A compact 30 GHz MMIC high power amplifier (3 W CW) in chip and packaged form,” 24th Annual Technical Digest Gallium Arsenide Integrated Circuit (GaAs IC) Symposiu, Monterey, California, USA, Oct. 2002, pp. 37-39.
    [33] S. Mahon, A. Dadello, J. Harvey and A. Bessemoulin, “A family of 1, 2 and 4-watt power amplifier MMICs for cost effective VSAT ground terminals,” IEEE Compound Semiconductor Integrated Circuit Symposium, 2005. CSIC '05., Nov. 2005, pp. 4 pp.
    [34] Shuoqi Chen, S. Nayak, Ming-Yih Kao and J. Delaney, “A Ka/Q-band 2 Watt MMIC power amplifier using dual recess 0.15 μm PHEMT process,” 2004 IEEE MTT-S International Microwave Symposium Digest (IEEE Cat. No.04CH37535), Oct. 2004, pp. 1669-1672 Vol.3.
    [35] M. R. Lyons, C. D. Grondahl and S. M. Daoud, “Design of low-cost 4W & 6W MMIC high power amplifiers for Ka-band modules,” 2004 IEEE MTT-S International Microwave Symposium Digest (IEEE Cat. No.04CH37535), Oct. 2004, pp. 1673-1676 Vol.3.
    [36] J. Chéron, M. Campovecchio, R. Quéré, D. Schwantuschke, R. Quay and O. Ambacher, “High-gain over 30% PAE power amplifier MMICs in 100 nm GaN technology at Ka-band frequencies,” 2015 10th European Microwave Integrated Circuits Conference (EuMIC), Paris, Dec. 2015, pp. 262-264.
    [37] K. Fujii, “Low cost Ka-band 7W GaAs PHEMT based HPA with GaN PHEMT equivalent performance,” 2015 IEEE Radio Frequency Integrated Circuits Symposium (RFIC), Phoenix, AZ, Nov. 2015, pp. 207-210

    下載圖示
    QR CODE