研究生: |
李文貞 |
---|---|
論文名稱: |
幼兒幾何形體概念發展研究 Young Children's Conception of Geometry |
指導教授: |
鍾志從
Jong, Jyh-Tsorng |
學位類別: |
碩士 Master |
系所名稱: |
人類發展與家庭學系 Department of Human Development and Family Studies |
論文出版年: | 2004 |
畢業學年度: | 92 |
語文別: | 中文 |
論文頁數: | 140 |
中文關鍵詞: | 幼兒幾何形體 、立體幾何 、平面幾何 |
論文種類: | 學術論文 |
相關次數: | 點閱:319 下載:85 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究之目的在於:建立幼兒幾何形體概念發展架構、發展幼兒幾何形體概念評量工具、以及瞭解幼兒幾何形體概念發展現況。研究方法以自編的幼兒幾何形體概念評量工具進行一對一施測晤談,輔以觀察、書面紀錄,以及錄影、錄音等方式蒐集資料。研究對象為台北市三所公立托兒所小班、中班、大班共217位幼兒。本研究主要結果如下:
一、幼兒幾何形體概念發展架構乃先基於皮亞傑拓樸為先,歐氏幾何與投影幾何在後的概念建立第一層架構,再依完形心理學知覺說與福祿貝爾、蒙特梭利的教具哲學,假設幼兒的立體幾何概念發展先於平面幾何概念的發展。立體幾何概念包括球體、正方體、長方體、圓柱體、橢圓體、三角柱、三角錐、圓錐、四角錐等。平面幾何概念包括圓形、正方形、長方形、三角形、橢圓形、菱形、梯形等。
二、幾何形體概念是指個體對平面幾何與立體幾何之名稱、外形、屬性等之認知。本研究發展之幼兒幾何形體概念的評量包含(一)「小蜜蜂奇遇記」藉以收集幼兒描述立體幾何所使用的詞彙與其分類表現;(二)「恐龍生病了」藉以瞭解幼兒描述平面幾何所使用的詞彙與其分類表現;(三)「神秘寶物」觀察透過觸覺幼兒對立體幾何的認知;(四)「小朋友眼睛照過來」檢測幼兒對立體幾何的正投影映象。
三、幼兒能以日常生活中的物件形容立體幾何,但說其正確的名稱非常困難。對平面幾何的認識,能說出正確名稱的次序是圓形最多,其次依序為三角形、正方形、長方形。幼兒均能表現合宜的分類亦有其分類理由,其判準有思考集中傾向。幼兒對立體幾何的觸覺認知與正投影平面幾何視覺映象已發展良好。此結果顯示:對於幾何形體概念的知覺判斷能力,幼兒已具備完好。幾何形體確與幼兒的生活經驗相關。只是,對於幾何形體概念的命名幼兒並不純熟,似乎與學習經驗有關。建議幼兒園的幾何形體課程可由日常生活物件與立體幾何相聯結,介紹立體幾何正確名稱,再引導幼兒由立體幾何的正面投影來認識平面幾何。
This study is to establish the framework of young children’s conception of geometry, to develop an evaluation tool for young children’s conception of geometry, and to understand the development of young children’s conception of geometry. The subjects of this research include 217 preschool children from three classes, levels one to three, in three different public preschools in Taipei. The method of this research involves collecting data from one-on-one interviews conducted through the evaluation tool for young children’s conception of geometry developed by the author. More data are collected from supplementary observations and other sources of written, audio and video records. The results of this study are as follows:
A. The first part of the framework of young children’s conception of
geometry is established firstly from Piaget’s Topological primacy studies and secondly from Euclidean Geometry and Projective Geometry studies. This framework then assumes that the conception of 3-dimensional shapes is developed prior to the conception of 2-dimensional shapes, following the Cognitive Theory of Gestalt Psychology and the instructional philosophies of Froebel and Montessori Three-dimensional shapes include spheres, cubes, rectangular solids, cylinders, ellipsoids, triangular columns, triangular awls, circular awls, rectangular awls, and so on. Two-dimensional ional shapes include circles, squares, rectangles, triangles, ellipses, rhombuses, trapezoids, and so on.
B. The conception of geometry indicates an individual’s recognition of the name, shape and characteristics of a geometrical shape. The evaluations for young children’s conception of geometry in this study include 1) “Adventures of a Little Bee” is to collect the vocabulary and classification of 3-dimensional shapes used in young children’s descriptions, 2) “The Dinosaur Is Sick” is to understand the vocabulary and classification of 2-dimensional shapes used in young children’s descriptions, 3) “Mysterious Treasures” is to observe young children’s recognition of 3-dimensional shapes through their touching the objects, and 4) “Kids, Look Over Here” is to examine the projected images of 3-dimensional shapes perceived by young children.
C. Young children can describe 3-dimensional shapes by referring to daily-life objects. However, it is rather difficult for them to name the shapes. For 2-dimensional shapes, what they can name correctly is circles, and then triangles, squares, and rectangles respectively. Young children also possess relevant reasons for their appropriate classifications, where they exhibit focus of thought. Their recognition of 3-dimensional shapes through touching and their visual projections of 2-dimensional shapes have already well developed. This indicates that young children are already well-equipped with good judgment and perception of geometrical shapes in their early years. The recognition of geometrical shapes is indeed related to life experiences. However, the naming of the shapes seems to be more closely related to learning experiences, since most children scored lower in naming the shapes. Therefore, our suggestion is that preschools should teach 3-dimensional shapes by associating them with daily-life objects, introducing the correct names of those shapes, and guiding the children to identify 2-dimensional shapes from the projected images of 3-dimensional shapes.
參考文獻
壹、中文部分:
丁振豐(民83)。三個心理學派典對空間能力研究的比較。台南師範學院「初等教育學報」,7,213-249。
王文科譯(民81)。兒童的認知發展導論(4版)(卜拉絲姬原著)。台北:文景出版社。
王筱篁(民85)。蒙特梭利教育系統-教育工學先導之一。教學科
技與媒體,30,3-10。
左台益(無日期)。標題:圖形理解與幾何概念之建構。民92年5月23日取自網站:http://www.ntnu.edu.tw/csd/kao/kao7/7-3c3.htm
朱敬先(民 81)。學前教育。台北:五南圖書出版公司。
余文卿、謝輝光譯(民78)。牛頓數學辭典(Daintith,J.,& Nelson,R.D.原著,)。台北:牛頓出版社。
李斯譯(民89)。心理學的世界-類型與發展(Hunt 原著)台北:究竟出版社。
呂季霏(民90)。花蓮縣國小低年級泰雅族學生平面幾何概念之詮釋性研究。國立花蓮師範學院國小科學教育研究所碩士論文。
沈珮芳(民91)。國小高年級學童平面幾何概念之探究。國立台北師範學院數理教育研究所碩士論文。
吳德邦(民88)。簡介范析理幾何思考理論。進修學訊,5,47-86。
吳德邦(民89)。台灣中部地區國小學童van Hiele幾何思考層次之研究-筆試的部分。八十八年度師範學院教育學術論文發表會論文集。
吳德邦(民89)。台灣中部地區國小學童van Hiele幾何思考層次之研究-晤談的部分。進修學訊年刊,6,11-32。
吳貞祥(民79)。幼兒的量與空間概念發展。國教月刊,37,1.2.,1-10。
周淑惠(民84)。幼兒數學新論-教材教法。台北:心理出版社。
周淑惠(民85)。當前幼兒數學研究及其教育意涵。國民教育研究學報,2,255-284。
林玉琦(民92)。國小高年級學童的梯形認知成份與VHL發展層次之研究。台中師範學院數學教育學系在職進修教學碩士學位班。
林莠芹(民92)。國小五年級排灣族學童平面幾何概念之詮釋研究---以屏東縣某國小為例。國立花蓮師範學院國小科學教育研究所。
林盛蕊(民77)。福祿貝爾恩物理論與實務。台北:中國文化大學青少年兒童福利學系。
林美珍(民85)。兒童認知發展。台北:心理出版社。
林碧珍(民82)。兒童「相似性」概念發展之研究-長方形。新竹師院學報,6,333-377。
林聰敏(民90)。德意志浪漫主義的教育理念-幼兒教育之父福祿貝爾。當代,166,48-61。
明德家商蒙特梭利研習中心編制(民83)。蒙特梭利法理論簡介。台中:台中市明德高級家事商業職業學校。
洪蘭譯(民86)。心理學(上、下)(Henry Gletiman原著)。台北:遠流出版公司。
高耀琮(民91)。兒童平面幾何概念之探討。國立台北師範學院數理教育研究所碩士論文。
孫文先(民75)。平面幾何。台北:九章出版社。
孫祖復(民84)。福祿貝爾。載於趙祥麟(主編),外國教育家評傳(二)。台北:桂冠圖書。
教育部國民教育司編(民76)。幼稚園課程標準。台北:中正書局。
張清亮(民75)。投影幾何。台北:全華科技圖書股份有限公司。
張炳煌(民92)。國小四年級學童四邊形概念之診斷教學研究。國立台北師範學院數理教育研究所碩士論文。
張英傑(民82)。兒童幾何形體認知概念之發展(I)。台北市:國立台北師範學院。國科會研究(W SC82-0111-S-152-003)
張英傑(民90)。兒童幾何形體概念之初步探究。台北市:國立台北師範學院學報,14,491-528。
張春興(民89)。現代心理學。台北:台灣東華書局股份有限公司。
康軒編輯小組(民90)。一上新挑戰數學-學習手冊。台北:康軒˙育橋文教事業出版。
郭育宓(民92)。國小學童平面基本圖形視覺期迷思概念之研究-以高雄縣壽齡國小為例。台南師範學院教師在職進修數學教育碩士學位班。
國立新竹師範學院幼教系(民86)。我國坊間學前數學教材之評析研究。教育部中教司。
黃光雄(民54)。福祿貝爾教育思想之研究。台灣省立師範大
學教育研究所集刊,8,185-280。
黃志祥(民92)。國小六年級學童四邊形幾何概念的包含關係-從概念心像與概念定。國立台北師範學院數理教育研究所碩士論文。
陶明潔譯 (民81)。人的教育。台北:亞太圖書出版社。(原著者Friedrich Wilhelm August Froebel,1826年發表。)
楊荊生(民83)。蒙特梭利(Maria Montessori)的生平與主要教育思想(上)。國教之聲,3,27,1-7。
楊荊生(民83)。蒙特梭利(Maria Montessori)的生平與主要教育思想(下)。國教之聲,4,27,34-42。
葉重新(民85)。教學研究-福祿貝爾的教育思想簡介(下)。國教輔導,36-3,38-45。
葉重新(民87)。心理學。台北:心理出版社。
葛曉冬(民89)。花蓮地區國小泰雅族學童van Hiele幾何思
考層次之調查研究。國立花蓮師範學院國小科學教育研究所
碩士論文。
劉 好(民84)。國小數學新課程「立體圖形」之教材教法設計理念。國教輔導,35-1,5-12。
劉芸旻(民92)。屏東地區排灣族國小六年級學童幾何概念之研究。屏東師範學院數理教育研究所。
劉秋木(民85)。國小數學科教學研究。台北:五南圖書公司。
盧美貴(民82)。幼兒教育概論。台北:五南出版社。
薛建成(民92)。依據van Hiele幾何思考理論─探究臺灣中部地區國小學童幾何概念發展之研究。台中師範學院數學教育學系在職進修教學碩士學位班。
謝金助(民92)。國小六年級學童四邊形迷思概念之診斷教學研究。國立台北師範學院數理教育研究所碩士論文。
謝貞秀(民92)。國小中年級學童平面幾何概念之探究。國立台北師範學院數理教育研究所碩士論文。
譚寧君(民82)。兒童的幾何觀-從Van Hiele幾何思考的發展模式談起。國民教育,33,5、6,12-17。
蘇英奇(民61)。圖形概念的調查分析。台中師專學報,2,262-299。
蘇英奇(民64)。圖形教學的改進與圖形概念的發展。台中師專學報,5。
蘇建文、黃凱倫(民83)。幼兒與母親依附關係及其社會行為之研究。家政教育,12,5,65-76。
饒見維(民83)。知識場論:認知、思考與教育的統合理論。台北,五南圖書公司。
英文部分
Bishop, A. J. (1983). Space and Geometry , in R. Lesh and M. Landau(Eds). Acquisition of Mathematics Concepts and Processes. Academic Press Inc.
Bruner, J. S.(1964).Some theorems on instruction illustrated with reference to mathematics. In E.R. Hilgard(Ed.),Theories of learning and instruction The sixty-third yearbook of the National Society for Study of Education,Part I (PP.306-335).
Bruner, J. S. (1965) . Toward a theory of instruction. Cambridge:Harvard University Press.
Bower,T.G.R.(1966).Slant percetion and shape constancy in infants.Science,151,832-834.
Burger, W. & Shaughnessy. J.M. (1986).Characterizing the van Hiele levels of developmenting geometry. Journal for Research in Mathematics Education, 17, 31-48.
Clements, D. H. & Battista, M. T. (1989). Learning of geometric concepts in a Logo environment. Journal for Research in Mathematics Education, 20, 450-467.
Clements, D. H. & Battista , M. T. (1990). The effects of Logo on children’s conceptualizations of angle and polygons . Journal for Research in Mathematics Education , 21, 356-371.
Clements, D. H., Swaminthan, S., Hannibal, M.A.Z.,& Sarama, J.(1999).Young children’s concepts of shape. Journal for Research in Mathematics Education, 20(2),192-212.
Day, R.H.(1987).Visual sige constancy in infancy.In B.E. McKenzie & R.H. Day (Eds.),perceptual development in early infancy:Problem and issues. Hillsdale, NJ:Erlbaum.
Day, R.H.& McKenzie, B.E.(1973).Perceptual shape constancy in early infancy.Peception,2,315-320.
Del Grande, J.(1990) Spatial sense. Arithmetic Teacher, 37(6),14-20.
Elizabeth. W.(1995) Facility with Plane Shapes: A Multifaceted Skill. Educational Studies in Mathematics, 28(4),3654 -383.
ERIC WEISSTEIN’S(n.d.).Geometry-from Math World。Retrieved May 3,2003,from http://mathworld.wolfram.com/Geometry.html
Fantz, R.L.(1963).Pattern vision in newborn infants Science , 140 , 296-297.
Fantz, R. L. (1964).Visual experience in infants:Decreased attention to familiar patterns relative to novel ones. Science,146, 668-670.
Fantz, R. L. (1965).Visual perception from birth as shown by pattern selectivity. In H. E. Whipple (ED), New issues in infant development. Annals of the New York Academy of Science, 118, 793-814.
Fantz, R. L., Fagen, J., & Miranda, S. B.(1975). Early visual selectivity. In L. Cohen & P. Salpatek(Eds), Infant perception:From sensation to cognition vol. I. Basic visual processes(pp.249-341).New York:Academic.
Fantz, R. L., & Nevis, S. (1967).Pattern preferences and perceptual-cognitive development in early infancy. Merrill-Palmer Quarterly, 13,77-108.
Farrell, Margaret A. (1987). Geometry for second school teachers. Learning and teaching geometry, K-12, 1987 yearbook, National council of teachers of mathematics.
Freudenthal, H. (1973). Geometry between the devil and the deep sea. Educational studies in mathematics, 3, 413-435.
Geeslin, W.E. & Shar, A.O.(1979).Alternative mode decribing spatial references: Topological and geometric concepts. Journal for Research in Mathematics Education, 10,57-68.
Hoffer, A.R.(1981) Geometry is more than proof. Mathematics Teacher, 74 , 11-18.
Hoffer, A. (1983). Van Hiele-based research. In R. Lesh & M. Landau (Eds.). Acquisition of mathematical concepts and processes (pp. 205-228). New York: Academic Press.
Krejcie, R.V.,& Morgan, D.W.(1970).Determining sample size for research activities. Education and Psychological Measurement,30,607-610.
Mary A. H.,(1999). Young Children’s Developing Understanding of Geometric Shapes. Teaching Children Mathematics,5(6),353-357.
Piaget, J., Inhelder, B, & Szeminska, A.(1960).The Child’s conception of geometry. London:Routledge and Kegan Paul.
Piaget, J., Inhelder, B.(1967). The child’s conception of space(F .J. Langdon & J.L. Lunzer, Trans.). New York:W. W. Norton.
Rosser. A., Horan, P.F., Mattson, S.L. & Mazzeo,J.(1984).Comprehension of Euclidean space in young children: the early emergence of understanding and its limits. Genetic Psychology Monographs, 110, 21-41.
Rosser. A., Mazzeo,J & Horan, P.F (1984). Reconceptualizing Perceptual Development: The Identification of Some Dimensions of Spatial Competence in Young Children. Contemporary Educational psychology, 9, 135-145.
Rosser. A. Campbell, K.P. & Horan, P.F. (1986).The Differential Salience of Spatial Information Features in the Geometric Reproductions of Young Children, The Journal of Genetic Psychology,147(4),447-455.
Senk, S. L. (1989). van Hiele levels and Achievement in writing geometry proofs. Journal for Research in Mathematics Education, 20,(3), 309-321.
Senk, S. L.& Uskin, (1990). Evaluating a test of van Hiele levels : A Response to Croeley and Wilson. Jouanal for Research in Mathematics Education, 21(3), 242-45.
Shaughnessy, J. M., & Burger, W.F. (1985).Spadework Prior to Deduction in Geometry. Mathematics Teacher,78,419-428.
1-36.
Van Hiele, P. M. (1986). Structure and insigh: A theory of mathematics education. Orlando, FL: Academic Press.