研究生: |
陳佳安 Chen, Chia-An |
---|---|
論文名稱: |
運用資料探勘於自動化色彩語意分析之研究 Automatic Analysis of Color Semantic by Data Mining Techniques |
指導教授: |
周遵儒
Chou, Tzren-Ru |
學位類別: |
碩士 Master |
系所名稱: |
圖文傳播學系 Department of Graphic Arts and Communications |
論文出版年: | 2019 |
畢業學年度: | 107 |
語文別: | 中文 |
論文頁數: | 95 |
中文關鍵詞: | 色彩語意 、資料探勘 、卷積神經網路 、色彩量化 |
英文關鍵詞: | Color Semantics, Data Mining, Convolutional Neural Network, Color Quantization |
DOI URL: | http://doi.org/10.6345/THE.NTNU.DGAC.007.2019.F05 |
論文種類: | 學術論文 |
相關次數: | 點閱:268 下載:6 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
電腦科技與資料科學的發展,促使色彩分析方式產生轉變,運用機器學習理論解讀色彩語意。透過跨領域技術整合,將色彩語意分析與實務應用引入更有效率、更低成本的分析方法,為本研究最具價值之處。本研究提出一個全新的色彩語意分析方法,配合網路大數據、卷積神經網路以及改良式中位切割演算法等資料探勘方式,分析詞彙的色彩意象,得出詞彙具體的對應RGB值;再依據調和配色理論,自動產出配色組合。最後透過問卷調查,評估色彩語意分析方法實際應用的可行性。
研究結果顯示,本研究提出之色彩語意分析方法,符合過去文獻與問卷調查之結果,並能找到詞彙對應之色彩趨勢,可省卻心理實驗的時間與人力成本,並且更有彈性。透過將調和配色理論數值化定義,產出之兩組配色應用設計(相似配色、補色配色),不僅能在短時間內產出大量色彩組合,且相較於人們依照直覺的配色,此方法更為客觀。將兩組配色應用設計之色彩組合與配色網站Adobe CC使用者配色比較詞彙之間的符合程度,其中一組符合程度稍差,另一組符合程度則與使用者提出的色彩組合相近,顯示此配色方法雖尚不及人為的配色操作,但仍具有極大發展與進步空間。
The methods of color analysis have changed because of the development of computer technology and data science; many studies use data mining techniques to interpret the color image of semantics. The most valuable aspect of this research is introduce new technologies to enable color semantic analysis in a more efficient and cost-effective way. This study proposes a new color semantic analysis method, which is combined with big data from internet, convolutional neural network and modified median cut quantization to analyze the color image of semantic and obtain the corresponding RGB value of vocabulary. By formulating a quantization algorithm based on the rules of colour harmony, the color combination is generated automatically. Finally, the feasibility of the color semantic analysis method is evaluated through questionnaire survey.
The results show that the analysis method proposed in this study can meet the results of past literature and questionnaire survey, and find the color trend corresponding to the vocabulary. By formulating quantization algorithm based on the rules of color harmony, we produce two sets of color combinations as samples. Compared the degree of conformity with human samples, one of our sample group is slightly worse, and the other sample group is similar to the color combination proposed by human, more than half of the people think that the samples and vocabularies feel in line with each other.
王修曉(2007)。研究方法概論。臺北市:五南。
吳毓瑩(1996)。量表奇偶點數的效度議題。調查研究,2,5-34。
李宗侃(2013)。色彩意象與色彩協調性關係之研究(未出版之碩士論文)。中國文化大學,台北市。
林伯賢(1999)。國人色彩偏好之調查分析。藝術學報,64,1-10。
周耀庭(2010)。網站配色決策支援系統設計與實作-以企業識別系統商標標準色為例(未出版之碩士論文)。國立交通大學,新竹市。
翁慈宗(2009)。資料探勘的發展與挑戰。科學發展,442,32-39。
郭曉媚(2015)。中文語意分析應用於部落格自動配色系統之研究(未出版之碩士論文)。國立臺灣師範大學,臺北市。
陳俊宏(1998)。色彩嗜好與色彩意象之調查分析。臺北市:藝風堂。
陳佩琳(2009)。設計師色彩意象配色之輔助系統研究(未出版之碩士論文)。國立雲林科技大學,雲林縣。
黃暄(2016)。基於CNN與SIFT之多查詢影像檢索(未出版之碩士論文)。國立交通大學,新竹市。
黃書倩(譯)(2003)。色彩學的基礎(原作者:山中俊夫)。臺北市:六合出版社。(原著出版年:1997)
葉仲超、吳慶烜(2009)。文化創意産業之資料探勘初探。嘉南學報(人文類),35,412-422。
賴瓊琦(1969)。全省小學-大專色彩喜好調查,明志工專第二屆畢業專刊。
賴瓊琦(1997)。設計的色彩心理:色彩的意象與色彩文化。新北市:視傳文化。
簡穩容(2013)。色彩調和理論於網頁自動配色應用之研究(未出版之博士論文)。國立臺灣師範大學,臺北市。
謝翠如(2009)。中文色彩詞彙及語言色彩類別空間(未出版之博士論文)。國立交通大學,新竹市。
羅梅君(1991)。印刷色度學。新北市:印刷科技雜誌。
戴孟宗、廖信、楊宜瑄(2010)。色彩形容詞與感知強度指標之研究。中華印刷科技年報,230-246。
Adams, F. M., & Osgood, C. E. (1973). A cross-cultural study of the affective meanings of color. Journal of cross-cultural psychology, 4(2), 135-156.
Berlin, B., & Kay, P. (1969). Basic color terms: Their universality and evolution. Berkeley, CA: University of California Press.
Berry, M. J., & Linoff, G. (1997). Data Mining Techniques: For Marketing, Sales, and Customer Support. New York, NY: John Wiley & Sons.
Bianco, S., Cusano, C., & Schettini, R. (2015). Color constancy using CNNs. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops (pp. 81-89), Boston, MA. Retrieved from https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7301275
doi: 10.1109/CVPRW.2015.7301275
Birren, F. (1900). The elements of color: a treatise on the color system of Johannes Itten based on his book: The art of color. New York, NY: Van Nostrand Reinhold.
Chang, S., Lewis, D. E., & Pearson, J. (2013). The functional effects of color perception and color imagery. Journal of Vision, 13(10), 1-10. doi:10.1167/13.10.4
Cheng, Z., Li, X., & Loy, C. C. (2016). Pedestrian Color Naming via Convolutional Neural Network. In Lai, S. H., Lepetit, V., Nishino, K., & Sato, Y. (Eds.), Computer Vision – ACCV 2016: 13th Asian Conference on Computer Vision (pp. 35-51). Cham, Switzerland: Springer. doi:10.1007/978-3-319-54184-6_3
Csurka, G., Skaff, S., Marchesotti, L., & Saunders, C. (2010). Learning moods and emotions from color combinations. Proceedings of the Seventh Indian Conference on Computer Vision, Graphics and Image Processing (pp. 298-305), Chennai, India. Retrieved from https://dl.acm.org/citation.cfm?id=1924599
doi: 10.1145/1924559.1924599
Derefeldt, G., Swartling, T., Berggrund, U., & Bodrogi, P. (2004). Cognitive color. Color Research & Application, 29(1), 7-19.
Frawley, W. J., Paitetsky-Shapiro, G., & Matheus, C. J. (1991). Knowledge discovery in databases: an overview. London, UK: AAAI/MIT Press.
Gao, X. P., Xin, J. H., Sato, T., Hansuebsai, A., Scalzo, M., Kajiwara, K., ... & Billger, M. (2007). Analysis of cross‐cultural color emotion. Color Research & Application, 32(3), 223-229.
Girshick, R., Donahue, J., Darrell, T., & Malik, J. (2014). Rich feature hierarchies for accurate object detection and semantic segmentation. Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 580-587), Columbus, OH. Retrieved from https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6909475
doi: 10.1109/CVPR.2014.81
Heer, J., & Stone, M. (2012). Color naming models for color selection, image editing and palette design. Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (pp.1007-1016), Austin, TX. Retrieved from http://vis.stanford.edu/files/2012-ColorNameModels-CHI.pdf
doi: 10.1145/2207676.2208547
Heydon, A., & Najork, M. (1999). Mercator: A scalable, extensible web crawler. World Wide Web, 2(4), 219-229.
Heider, E. R. (1971). " Focal" color areas and the development of color names. Developmental psychology, 4(3), 447.
Humphreys, G. W., & Bruce, V. (1989). Visual cognition: Computational, experimental, and neuropsychological perspectives. Hove & London, United Kingdom: Lawrence Erlbaum Associates.
Jahanian, A., Liu, J., Lin, Q., Tretter, D., OBrien-Strain, E., Lee, S. C., ... & Allebach, J. (2013). Recommendation system for automatic design of magazine covers. Proceedings of the 2013 international conference on Intelligent user interfaces, (pp. 95-106), Santa Monica, CA. Retrieved from https://people.csail.mit.edu/jahanian/papers/Jahanian_R-ADoMC_IUI2013.pdf doi: 10.1145/2449396.2449411
Kay, P., & McDaniel, C. K. (1978). The linguistic significance of the meanings of basic color terms. Language, 610-646.
Kay, P., & Regier, T. (2006). Language, thought and color: recent developments. Trends in cognitive sciences, 10(2), 51-54.
Kawakami, K., Dyer, C., Routledge, B. R., & Smith, N. A. (2016). Character Sequence Models for Colorful Words. Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing (pp. 1949-1954), Austin, TX. Retrieved from https://pdfs.semanticscholar.org/8603/19486fd5f562ebd067279d9e2e2aace5b515.pdf
doi: 10.18653/v1/D16-1202
Kobayashi, S. (1981). The aim and method of the color image scale. Color Research & Application, 6(2), 93-107.
Kobayashi, S. (1991). Color Image Scale. Tokyo, Japan: Kodansha.
Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). ImageNet classification with deep convolutional neural networks. Communications of the ACM, 60(6), 84-90. doi: 10.1145/3065386
LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11), 2278-2324.
Lin, S., Fortuna, J., Kulkarni, C., Stone, M., & Heer, J. (2013). Selecting semantically‐resonant colors for data visualization. In Computer Graphics Forum, 32(3), 401-410. doi: 10.1111/cgf.12127
Lindner, A., Li, B. Z., Bonnier, N., & Süsstrunk, S. (2012). A large-scale multi-lingual color thesaurus. Proceedings of the Color and Imaging Conference (pp. 30-35), Los Angeles, CA. Retrieved from https://pdfs.semanticscholar.org/d411/436a0a0467790f2b7a7d112853ee9d7e3fe8.pdf
Lindner, A., & Süsstrunk, S. (2013). Automatic color palette creation from words. Proceedings of the Color and Imaging Conference (pp. 69-74), Albuquerque, NM. Retrieved from https://infoscience.epfl.ch/record/189991/files/cic21_lindner.pdf
Liu, Y., Zhang, D., Lu, G., & Ma, W. Y. (2004). Region-based image retrieval with perceptual colors. In Aizawa, K., Nakamura, Y., & Satoh, S. (Eds.), Advances in Multimedia Information Processing - PCM 2004 (pp. 931-938). Berlin & Heidelberg, Germany: Springer-Verlag. doi: 10.1007/978-3-540-30542-2_115
Moon, P., & Spencer, D. E. (1944) Aesthetic measure applied to color harmony. Journal of the Optical Society of America, 34(4), 234-242.
Moore, C. C., Romney, A. K., & Hsia, T. L. (2002). Cultural, gender, and individual differences in perceptual and semantic structures of basic colors in Chinese and English. Journal of Cognition and Culture, 2(1), 1-28.
Munsell, A. H. (1912). A pigment color system and notation. The American Journal of Psychology, 23(2), 236-244.
Mylonas, D., MacDonald, L., & Wuerger, S. (2010). Towards an online color naming model. Proceedings of the 18th Color and Imaging Conference: Color Science and Engineering Systems (pp. 140-144), San Antonio, TX. Retrieved from https://www.ingentaconnect.com/content/ist/cic/2010/00002010/00000001/art00025
Osgood, C.E., Suci, G.J., & Tannenbaum, P.H. (1957). The measurement of meaning. Urbana, IL: University of Illinois Press.
Ou, L. C., Luo, M. R., Woodcock, A., & Wright, A. (2004). A study of colour emotion and colour preference. Part I: Colour emotions for single colours. Color Research & Application, 29(3), 232-240.
Ou, L. C., Luo, M. R., Sun, P. L., Hu, N. C., Chen, H. S., Guan, S. S., ... & Richter, K. (2012). A cross‐cultural comparison of colour emotion for two‐colour combinations. Color Research & Application, 37(1), 23-43. doi: 10.1002/col.20648
Paramei, G. V. (2005). Singing the Russian blues: An argument for culturally basic color terms. Cross-cultural research, 39(1), 10-38
Roberson, D., Davies, I., & Davidoff, J. (2000). Color categories are not universal: replications and new evidence from a stone-age culture. Journal of Experimental Psychology: General, 129(3), 369.
Ronchi, L. R.(2013). Experimantation Color Vision Psychophysical and Interacting with Color Language. Florence, Italy: Lucia Ronchi.
Shamoi, P., Inoue, A., & Kawanaka, H. (2015). Deep color semantics for E-commerce content-based image retrieval. In Diaz, I., Ralescu, Anca., & Schiffer, S. (Eds.), Proceedings of the 2015 International Conference on Fuzzy Logic in Aartificial Intelligence - Volume 1424 (pp. 14-20). Aachen, Germany: CEUR Workshop Proceedings.
Schauerte, B., & Fink, G. A. (2010). Web-based learning of naturalized color models for human-machine interaction. Proceedings of the 2010 International Conference on Digital Image Computing: Techniques and Applications (pp. 498-503), Sydney, Australia. Retrieved from https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5692610
doi: 10.1109/DICTA.2010.90
Schauerte, B., & Stiefelhagen, R. (2012). Learning robust color name models from web images. Proceedings of the 21st International Conference on Pattern Recognition (pp. 3598-3601), Tsukuba, Japan. Retrieved from https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6460943
Shen, Y. C., Chen, Y. S., & Hsu, W. H. (1996). Quantitative evaluation of color harmony via linguistic‐based image scale for interior design. Color Research & Application, 21(5), 353-374.
Sergyan, S. (2008). Color histogram features based image classification in content-based image retrieval systems. Proceedings of the Applied Machine Intelligence and Informatics (pp. 221-224), Herlany, Slovakia. Retrieved from https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=4469170
doi: 10.1109/SAMI.2008.4469170
Spearman, C. (1927). The abilities of man. Oxford, England: Macmillan.
Stroop, J. R. (1935). Studies of interference in serial verbal reactions. Journal of experimental psychology, 18(6), 643.
Taft, C. (1997). Color Meaning and Context: Comparisons of Semantic Ratings of Colors on Samples and Objects. Color Research & Application, 22(1), 40-50.
Taylor, J. R. (2003). Linguistic categorization. Oxford, UK: Oxford University Press.
Thelwall, M. (2001). A web crawler design for data mining. Journal of Information Science, 27(5), 319-325.
van de Weijer, J., Schmid, C., & Verbeek, J. (2007). Learning color names from real-world images. Computer Vision and Pattern Recognition, 1-8.
doi: 10.1109/CVPR.2007.383218
Van de Weijer, J., Schmid, C., Verbeek, J., & Larlus, D. (2009). Learning color names for real-world applications. IEEE Transactions on Image Processing, 18(7), 1512-1523. doi: 10.1109/TIP.2009.2019809
Wang, Y., Liu, J., Wang, J., Li, Y., & Lu, H. (2015). Color names learning using convolutional neural networks. Proceedings of the Image Processing (pp. 217-221), Quebec, Canada. Retrieved from https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=7350791
doi: 10.1109/ICIP.2015.7350791
Westland, S., Laycock, K., Cheung, V., Henry, P., & Mahyar, F. (2007). Colour harmony. Journal of Society of Dyer and Colourists, 1(1), 1-15.
Whorf, B. L., & Chase, S. (1956). Language,Thought and Reality,Selected Writings of Benjamin Lee Whorf. Cambridge, MA: The MIT Press.
Winawer, J., Witthoft, N., Frank, M. C., Wu, L., Wade, A. R., & Boroditsky, L. (2007). Russian blues reveal effects of language on color discrimination. Proceedings of the National Academy of Sciences, 104(19), 7780-7785.
doi: 10.1073/pnas.0701644104
Wu, H. R., & Rao, K. R. (Eds.). (2005). Digital video image quality and perceptual coding. Boca Raton, FL: CRC press.
Bai, X., Chen, F., & Zhan, S. B. (2014). A study on sentiment computing and classification of sina weibo with word2vec. Proceedings of the 2014 IEEE International Congress on Big Data (pp. 358-363), Anchorage, AK. Retrieved from https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6906802 doi: 10.1109/BigData.Congress.2014.59
Zeiler, M. D., & Fergus, R. (2014). Visualizing and understanding convolutional networks. In Fleet, D., Pajdla, T., Schiele, B., & Tuytelaars, T. (Eds.), Computer Vision -- ECCV 2014 (pp. 818-833). Zurich, Switzerland: Springer International Publishing. doi: 10.1007/978-3-319-10593-2