簡易檢索 / 詳目顯示

研究生: 陳志雄
Chih-Hsiung Chen
論文名稱: 龍膽屬內小龍膽組的親緣關係研究
The phylogenetic study of Gentiana sect. Chondrophyllae Bunge (Gentianaceae)
指導教授: 王震哲
Wang, Jenn-Che
學位類別: 博士
Doctor
系所名稱: 生命科學系
Department of Life Science
論文出版年: 2001
畢業學年度: 89
語文別: 中文
中文關鍵詞: 龍膽科龍膽屬小龍膽組核核糖體基因序列葉綠體基因序列分子親緣關係染色體數目
英文關鍵詞: Gentianaceae, Gentiana, Chondrophyllae, nuclear ribosomal sequence, chloroplast DNA sequence, molecular phylogeny, chromosome number
論文種類: 學術論文
相關次數: 點閱:371下載:27
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 中文摘要
    本研究根據細胞核DNA之internal transcribed spacer及葉綠體DNA(trnL(UAA)3'exon與trnF(GAA)之間的intergenic spacer, IGS;以及trnL(UAA)5'exon與trnL(UAA)3'exon之間的intron, trn-L)之非轉譯區DNA序列資料,針對龍膽屬內小龍膽組32個分類群之分子親緣關係進行研究,並探討台灣特產種類的起源問題。
    研究龍膽屬類群發現,DNA序列自核基因組共獲得約453~479bp,自葉綠體基因組共得到626~740bp,每分類群共獲得約1,100~1,200 bp的資料;合併資料組經排序後得到1450個序列特徵,共計690個變異位置及422個儉約訊息位置,屬內分類群間則具5~227bp的差異。比較核基因組及葉綠體基因組後序列資料發現,前者之G+C content 為56.4%~61.5%之間,後者則僅33.6%~36.7%;而兩個基因組的核酸取代率差異不大,且依該序列資料所建構之親緣關係亦具一致性。
    綜合本研究與前人所報導之核基因組序列資料(ITS1+ITS2),所建構之親緣關係樹在組層級方面,支持小龍膽組種類為單系群的假說。合併基因組在解析小龍膽組內的系層級關係上,發現菔根系與流蘇系為單系群,帚枝系具有並系群的現象,卵萼系、線葉系,及小龍膽系則呈現為複系群。
    台灣特有的小龍膽類群,根據分子親緣關係,應為兩個起源。其中一個分支包含11個分類群(台灣黃花龍膽群),其姊妹群為菔根系,兩者具有相當長的演化距離,表示已隔離分化相當世代;另一起源則僅有台東龍膽一種,其姊妹群為卵萼系的鱗葉龍膽,兩者演化距離短,可能為新近才隔離分化的類群。
    上述分子序列資料外,綜合染色體數目及地理分布與生態習性的相關研究發現,台灣黃花龍膽群在種類間具有穩定的形態差異,但卻呈現低的遺傳變異度,顯然為最近才快速種化的類群;而根據生育地隔離現象明顯且變動性高,加上染色體數目為兩組連續變異,且與形態的歸群相關,研判族群之間因生育習性所造成的阻隔,加上染色體數目不整倍化的現象,應為造成台灣黃花龍膽群快速種化的重要機制。

    Abstract
    Nucleotide sequences of the internal transcribed spacers of nuclear ribosomal DNA and sequences of two chloroplast DNA noncoding regions of the trnL intron (trn-L) and the intergenic spacer between the trnL and the trnF genes of 32 species of sect. Chondrophyllae were determined and analysed phylogenetically, together with some species of other sections of the genus Gentiana. Based on the sequence data, the origination of endemic species of Taiwan is inferred.
    The length of nrDNA on ITS1 + ITS2 in the taxa surveyed ranged from 453 to 479 bp and cpDNA on IGS + trn-L from 626 to 740 bp. Totally, about 1100 to 1200 bp sequence data in these taxa are obtained. Of the aligned sequences of 1450 positions, 690 variable sites and 422 parsimony sites existed. Pairwise comparisons among Gentiana species showed that sequences diverge from 5 to 227 bp. Comparison of the substitution rates among sequences revealed that nrDNA and cpDNA possess similar sequence divergence. The G + C content varied from 56.4% to 61.5% in nrDNA and from 32.6% to 36.7% in cpDNA. Both the sequence data from nrDNA and cpDNA give concordant phylogenetic trees.
    By incorporating previously released ITS1 and ITS2 sequence data of 20 other species into phylogenetic analyses, the ITS phylogeny supports the monophyly of the sect. Chondrophyllae. Based on NJ tree of combined data (nrDNA + cpDNA) of the sect. Chondrophyllae, both ser. Napuliferae and Fimbriatae are revealed monophyly, but ser. Fastigiatae is the paraphyly. In contrast, series Orbiculatae, Linearifoliae, and Humiles are polyphyletic groups.
    All the twelve Taiwanese taxa of sect. Chondrophyllae are endemic. They were shown to have two origins according to the molecular phylogeny. Among them, a well-supported clade of eleven taxa (Taiwanese yellow-flowered gentians) is closely related to the ser. Napuliferae. In contrast, another lineage contains only a single taxon G. tenussima. Its shorter genetic distance to related taxon implies a short isolation history.
    Taiwanese yellow-flowered gentians are morphologically differentiation among species. Cytological, phytogeographical, and ecological evidenced while low genetic divergence exists among species, indicates a rapid speciation occurred on these taxa. Based on the facts that the habitat variable, that most of these taxa appear to be obviously isolated, and that the chromosome number also seems to be relevant to morphological differentiation. I propose that isolation of populations and dysploidization in chromosome number are important mechanisms of the speciation of Taiwanese yellow-flowered gentians.

    目次 附表目次 .......................................................................... Ⅳ 附圖目次 .......................................................................... Ⅴ 中文摘要 ......................................................................... Ⅶ英文摘要 ........................................................................... Ⅷ 前言 .............................................................................................. 1 材料與方法 ................................................................................. 14 研究結果 ..................................................................................... 32 討論 ............................................................................................ 56 結論 ............................................................................................ 74 引用文獻 .................................................................................... 76 附錄 ............................................................................................ 84 附表目次 表一、 龍膽屬屬內組階級的分類處理、主要區分特徵與分布 ............................. 4 表二、 小龍膽組之組內階級分類處理及主要區分特徵 ........................................ 7 表三、 台灣產龍膽屬植物之屬下分類處理,與其主要之區分特徵 ................ 9 表四、 DNA序列資料之實驗材料種類,及其證據標本採集號與採集地資料.... 18 表五、 ITS1、ITS2、trn-L、及IGS之序列長度,及G+C content的百分比 .... 35 表六、 DNA資料經排序後之gap長度及其統計 .................................................. 37 表七、 與本研究相關的類群之ITS1與ITS2序列分子資料及文獻出處 ............ 40 表八、 台灣產龍膽屬植物染色體研究結果及標本資料 ...................................... 55 附圖目次 圖一、 於台灣地區所採集之DNA序列實驗材料種類 ........................................... 15 圖二、 於中國西南山區所採集之DNA序列實驗材料種類 ................................... 16 圖三、 於日本所採集之3種DNA序列實驗材料種類 ............................................ 17 圖四、 核基因組上的ITS1及ITS2片段之相對位置及其引子序列 ...................... 22 圖五、 葉綠體基因組上的trn-L及IGS片段的相對位置及其引子序列 ................ 22 圖六、 龍膽屬DNA樣品之PCR產物在1% agarose gel上的電泳結果 ................. 34 圖七、 隨機選擇10個隸屬不同屬內階級的類群,檢測核基因組與葉綠體基因組之非轉譯片段在類群間變異比率的差異 ........................................................ 39 圖八、 合併入前人報導之資料,根據核基因組(ITS1+ITS2)序列,以neighbor joining方法所建構之龍膽屬類群的親緣關係樹狀圖 ................................... 42 圖九、 合併入前人報導之資料,根據核基因組(ITS1+ITS2)序列,以maximum parsimony方法所建構之龍膽屬類群的親緣關係樹狀圖 .............................. 43 圖十、 合併入前人報導之資料,根據核基因組(ITS1+ITS2)序列,以maximum likelihood方法所建構之龍膽屬類群的親緣關係樹狀圖 .............................. 44 圖十一、 以核基因組(ITS1+ITS2)的資料,用neighbor joining方法所建構之龍膽屬類群的親緣關係樹狀圖 ........................................................................ 45 圖十二、 以葉綠體基因組(IGS+trn-L)的資料,用neighbor joining方法所建構之龍膽屬類群的親緣關係樹狀圖 ................................................................ 45 圖十三、 以核基因組(ITS1+ITS2)的資料,用maximum parsimony方法所建構之龍膽屬類群的親緣關係樹狀圖 ................................................................ 46 圖十四、 以葉綠體基因組(IGS+trn-L)的資料,用maximum parsimony方法所建構之龍膽屬類群的親緣關係樹狀圖 ............................................................ 46 圖十五、 合併核基因組(ITS1+ITS2)及葉綠體基因組(IGS+trn-L)的資料,以neighbor joining方法所建構之龍膽屬類群的親緣關係樹狀圖 ................ 48 圖十六、 合併核基因組(ITS1+ITS2)及葉綠體基因組(IGS+trn-L)的資料,以maximum parsimony方法所建構之龍膽屬類群的親緣關係樹狀圖 ........ 49 圖十七、 合併核基因組(ITS1+ITS2)及葉綠體基因組(IGS+trn-L)的資料,將每個插入或缺失片段以一個第五特徵編碼計算,以maximum parsimony方法所建構之龍膽屬類群的親緣關係樹狀圖 ................................................ 50 圖十八、 合併核基因組(ITS1+ITS2)及葉綠體基因組(IGS+trn-L)的資料,以maximum likelihood方法所建構之龍膽屬類群的親緣關係樹狀圖 ......... 51 圖十九、 台灣產龍膽屬之染色體 ........................................................................... 54 圖二十、 龍膽屬小龍膽組類群之分子親緣支系及其地理分布.............................. 64 圖二十一、 台灣產黃花龍膽群之稀有種類的地理分布圖 .................................... 68 圖二十二、 台灣特產之11種黃花龍膽群,其染色體數目可能的兩種演化過程 .. 72

    引用文獻
    陳志雄 1996 台灣產龍膽屬的分類研究。台灣師範大學生物研究所碩士論文。
    陳志雄 1998 呂勝由、邱文良編 臺灣稀有及頻危植物之分級(彩色圖鑑Ⅲ),71頁至80頁。行政院農業委員會印行。
    Apples, R. and J. Dvorak. 1992. Relative rates of divergence of spacer and gene sequences within the rDNA region of species in the Triticeae: Implications for the maintenance of homogeneity of a repeated gene family. Theor. Appl. Genet. 63: 361-365.
    Arnheim, N., M. Krystal, R. Schmickel, G. Wilson, O. Ryder, and E. Zimmer. 1980. Molecular evidence for genetic exchanges among ribosomal genes on nonhomologous chromosomes in man and apes. Proc. Natl. Acad. Sci. USA. 77: 7323-7327.
    Archie, J. W. 1989. Homoplasy excess ratios: New indices for measuring levels of homoplasy in phylogenetic systematics and a critique of the consistency index. Syst. Zool. 38: 253-269.
    Archie, J. W. 1990. Homoplasy excess statistics and retention indices: A reply to Farris. Syst. Zool. 39: 169-174.
    Baldwin, B. G., M. J. Sanderson, J. M. Porter, M. F. Wojciechowski, C. S. Campbell, and M. J. Donoghue. 1995. The ITS region of nuclear ribosomal DNA: A valuable source of evidence on angiosperm phylogeny. Ann. Missouri Bot. Gard. 82: 247-277.
    Baldwin, B. G. and B. L. Wessa. 2000. Origin and relationships of the tarweed-silversword lineage (Compositae-Madiinae). Amer. J. Bot. 87: 1890-1908.
    Bremer, K. 1988. The limits of amino acid sequence data in angiosperm phylogenetic reconstruction. Evolution 42(4): 795-803.
    Chase, M. W. and H. H. Hills. 1991. Silica gel: An ideal material for field preservation of leaf samples for DNA studies. Taxon 40: 215-220.
    Chen, C. H. and J. C. Wang. 1998. Gentiana. In Editorial Committee Flora Taiwan (eds.), Flora of Taiwan, 2nd Edit., vol. 4. pp. 155-176. Natl. Sci. Council R.O.C., Taiwan.
    Chen, C. H. and J. C. Wang. 1999. Revision of the genus Gentiana L. (Gentianaceae) in Taiwan. Bot. Bull. Acad. Sin. 40: 9-38.
    Chuang, T. I., C. Y. Chao, W. L. Hu, and S. C. Kwan. 1962. Chromosome numbers of the vascular plants of Taiwan I. Taiwania 8: 51-66.
    Doyle, J. J. and J. L. Doyle. 1987. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem. Bull. 19: 11-15.
    Fangan, B. M., B. Stedje, O. E. Stabbetorp, E. S. Jensen, and K. S. Jakobsen. 1994. A general approach for PCR-amplification and sequencing of chloroplast DNA from crude vascular plant and algal tissue. Biotechniques 16: 484-493.
    Felsenstein, J. 1985. Confidence limits on phylogenies: An approach using the bootstrap. Evolution 39: 783-791.
    Felsenstein, J. 1995. PHYLIP, the phylogenetic inference package, version 3.57c. University of Washington, Seattle, Washington.
    Gielly, L. and P. Taberlet. 1996. A phylogeny of the European gentians inferred from chloroplast trnL (UAA) intron sequence. Bot. J. Linn. Soc. 120: 57-75.
    Gielly, L., Y. M. Yuan, P. Kupfer, and P. Taberlet. 1996. Phylogenetic use of noncoding regions in the genus Gentiana L.: Chloroplast trnL (UAA) intron versus nuclear ribosomal internal transcribed spacer sequences. Mol. Phylogenet. Evol. 5(3): 460-466.
    Gillett, J. M. 1957. A revision of the North American species of Gentianella Moench. Ann. Missouri. Bot. Gard. 44(3): 195-269.
    Grisebach, A. H. R. 1845. Gentianaceae In A. De Condolle (ed.), Prodromus. 9: 38-141. Paris.
    Hall T. A. 1999. BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl. Acids. Symp. Ser. 41:95-98.
    Hennig, W. 1965. Phylogenetic systematics. Ann. Rev. Entomol. 10: 97-116.
    Hillis, D. M., C. Moritz, C. A. Porter, and R. J. Baker. 1991. Evidence for biased gene conversion in concerted evolution of ribosomal DNA. Science 251: 308-310.
    Ho, T. N. 1985. A study on the genus Gentiana of China (Ⅳ). Bull. Bot. Res. 5(4): 1-22.
    Ho, T. N. 1988. Flora Reipublicae Popularis Sinicae. Tomus 62. pp. 1-446. Science Press, Beijing.
    Ho, T. N. and S. W. Liu. 1990. The infrageneric classification of Gentiana (Gentianaceae). Bull. Br. Mus. Nat. Hist (Bot.). 20(2): 169-192.
    Ho, T. N. and J. S. Pringle 1995. Gentianaceae. In Editorial Committee, Flora of China, vol. 16, Gentianaceae Through Boraginaceae. pp. 1-139. Science Press (Beijing) and Missouri Bot. Gard.
    Ho, T. N., S. W. Liu, and X. F. Lu. 1996. A phylogenetic analysis of Gentiana (Gentianaceae). Acta Phytotax. Sin. 34(5): 505-530.
    Hsu, C. C. 1968. Preliminary chromosome studies on the vascular plants of Taiwan (Ⅱ). Taiwania 14: 11-28.
    Jones, K. 1978. Aspects of chromosome evolution in higher plants. Adv. Bot. Res. 6: 159-194.
    Kimura, M. 1980. A sample method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16: 111-120.
    Krasnoborov, I. M., T. S. Rostovtsea, and S. A. Ligus. 1980. Chromosome numbers of some plants species of South Siberia and the Far East. Bot. Zurn (Moscow & Leningrad). 65: 659-668.
    Küpfer, P. and Y. M. Yuan. 1996. Karyological studies on Gentiana sect. Chondrophyllae Bunge (Gentianaceae) from China. Pl. Syst. Evol. 200: 161-176.
    Kusnezow, N. I. 1894. Subgenus Eugentiana of genus Gentiana Tourn. Trudy Imp. S.-Peterb. Obshch. Estest. 24(2): 1-531.
    Kuanezow, N. I. 1895. Gentiana Tourn. In A. Engler & K. Prantl (eds.), Die Natü-rlichen Pflanzenfamilien. 4(2): 80-86. Leipzig.
    Kyhos, D. W., G. D. Carr, and B. G. Baldwin. 1990. Biodiversity and cytogenetics of the tarweeds (Asteraceae: Heliantheae-Madiinae). Ann. Missouri Bot. Gard. 77: 84-95.
    Linnaeus, C. 1737. Genera plantarum, ed. 1. Leiden.
    Linnaeus, C. 1753. Species plantarum, ed. 1. Stockholm.
    Liu, T. S. and C. C. Kuo. 1974. A taxonomic revision of the species of Gentianaceae in Taiwan. Bull. Exp. Forest N.T.U. 114: 165-216.
    Löve, A. and D. Löve. 1976. The natural genera of Gentianaceae. In P. Kachroo (ed.), Recent advances in botany. pp. 205-222. Dehra Dun, Delhi.
    Maddison, W. P. and D. R. Maddison. 1993. MacClade. Analysis of phylogeny and character evolution, v. 3.04. Sinauer Associates, Massachusetts.
    Margush, T. and F. R. McMorris. 1981. Consensus n-tree. Bull. Math. Biol. 43: 239-244.
    Marquand, C. V. B. 1928. New Asiatic gentians. Bull. Misc. Inform. Roy. Bot. Gdns. Kew. 1928: 49-62.
    Marquand, C. V. B. 1937. The gentians of China. Bull. Misc. Inform. Roy. Bot. Gdns. Kew. 1937: 134-180.
    Mason-Gramer, R. J. and E. A. Kellogg. 1996. Testing for phylogenetic conflict among molecular data sets in the tribe Triticeae (Graminaeae). Syst. Biol. 45: 522-543.
    O'Donnell, K. 1992. Ribosomal DNA internal transcribed spacers are highly divergent in the phytopathogenic ascomycete Fusarium sambucinum (Gibberella pulicaris). Curr. Genet. 22: 213-220.
    Olmstead, R. G. and J. D. Palmer. 1994. Chloroplast DNA systematics: A review of methods and data analysis. Amer. J. Bot. 81(9): 1205-1224.
    Omer, S., S. I. Ali, and M. Qaiser. 1988. New combinations and taxa in the genus Gentianodes (Gentianaceae) from Pakistan. Pakistan J. Bot. 20: 1-19.
    Oostermeijer, J. G. B., J. C. M. D. Nijs, L. E. L. Raijmann, and S. B. J. Menken. 1992. Population biology and management of the marsh gentian (Gentiana Pneumonanthe L.), a rare species in the Netherlands. Bot. J. Linn. Soc. 108: 117-130.
    Oostermeijer, J. G. B., R. V. Veer, and C. M. D. Nijs. 1994. Population structure of the rare, long-lived perennial Gentiana pneumonanthe in relation to vegetation and management in the Netherlands. J. Appl. Ecol. 31: 428-438.
    Page, R. D. M. and E. C. Holmes. 1998. Molecular evolution. pp. 187-201. Cambridge University Press, UK.
    Pringle, J. S. 1978. Sectional and subgeneric names in Gentiana (Gentianaceae). Sida 7(3): 232-247.
    Ritland, K. and M. T. Clegg. 1990. Optmal DNA sequence diversity for testing phylogeneric hypothesis. In M. T. Clegg and S. J. O'Brien (eds.), Molecular evolution, UCLA symposia on molecular and cellular biology, new series, vol. 122: 289-299. Alan R. Liss, New York, NY.
    Sang, T., D. J. Crawford, and T. F. Stuessy. 1995. Documentation of reticulate evolution in peonies (Paeonia) using internal transcribed spacer sequences of nuclear ribosomal DNA: Implications for biogeography and concerted evolution. Proc. Natl. Acad. Sci. USA. 92: 6813-6817.
    Scott, O. R. and A. J. Bendich. 1994. Extraction of total cellular DNA from plants, algae and fungi. Pl. Mol. Biol. Manual. pp. 1-3.
    Shigenobu, Y. 1984. Karyomorphological studies in some genera of Gentianaceae II. Gentiana and its allies four genera. Bull. Coll. Child Developm. Kochi Women's Univ. 8: 55-104.
    Smith, H. 1961. Problems relating to the Gentiana cachemirica of the "Flora of British India". Kew Bull. 55: 43-55.
    Smith, H. 1965. Notes on Gentianaceae. Not. Roy. Bot. Gard., Edinburgh. 26: 237-260.
    Soltis, P. S. and D. E. Soltis. 1995. Alternative genes for phylogenetic reconstruction in plant: Introduction. Ann. Missouri Bot. Gard. 82: 147-148.
    Sorenson, M. D. 1999. TreeRot, version 2. Boston University, Boston, MA.
    Stebbin, G. L. 1950. Variation and evolution in plants. Columbia University Press, New York, New York, USA.
    Stebbins, G. L. 1971. Chromosomal evolution in higher plants. Edward Arnold Ltd., London.
    Swofford, D. L. 1998. PAUP*. Phylogenetic analysis using parsimony (*and other method). version 4.0. Sinauer, Sunderland, Mass. Computer software.
    Swofford, D. L. and G. J. Olsen. 1990. Phylogeny reconstruction. In D. M. Hills and C. Moritz (eds.), Molecular systematics. pp. 411-501. Sinauer, Sunderland, Massachusetts.
    Taberlet, P., L. Gielly, G. Pautou, and J. Bouvet. 1991. Universal primers for amplification of three non-coding regions of chloroplast DNA. Pl. Mol. Biol. 17: 1105-1109.
    Templeton, A. R. 1983. Phylogenetic inference from restriction endonuclease cleavage site maps with particular reference to the evolution of humans and the apes. Evolution 37: 221-244.
    Toyokuni, H. 1963. Conspectus Gentianacearum Japonicarium, a general view of the Gentianaceae indigenous to Japan. J. Fac. Sci. Hokkaido Univ. 7(4): 137-259.
    Wang, W. T. 1992. On some distribution patterns and some migration routes found in the Eastern Asiatic Region. Acta Phytotax. Sin. 30: 1-24.
    Weber, W. A. 1985. New names and combinations, principally in the Rocky Mountain flora-V. Phytologia 58: 382-384.
    White, T. J., T. Bruns, S. Lee, and J. Taylor. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In M. D. Innis et al. (eds.), PCR protocols: A guide to methods and applications. pp. 315-322. San Diego, Academic Press.
    Yamazaki, T. 2000. A new species of Gentiana from Ryukyus. J. Jap. Bot. 75: 280-281.
    Yuan, Y. M. 1993. Seedcoat micromorphology and its systematic implications for Gentianaceae of Western China. Bot. Helv. 103: 73-82.
    Yuan, Y. M. and P. Küpfer. 1993. Karyological studies on Gentiana sect. Frigida S. L. and sect. Stenogyne (Gentianaceae) from China. Bull. Soc. Neuchâteloise Sci. Nat. 16(2): 65-78.
    Yuan, Y. M. and P. Küpfer. 1995. Molecular phylogenetics of the subtribe Gentianinae (Gentianaceae) inferred from the sequences of internal transcribed spacers (ITS) of nuclear ribosomal DNA. Pl. Syst. Evol. 196: 207-226.
    Yuan, Y. M., P. Küpfer, and J. J. Doyle. 1996. Infrageneric phylogeny of the genus Gentiana (Gentianaceae) inferred from nucleotide sequences of the internal transcribed spacers (ITS) of nuclear ribosome DNA. Amer. J. Bot. 83 (5): 641-652.
    Yuan, Y. M. and P. Küpfer. 1997. The monophyly and rapid evolution of Gentiana sect. Chondrophyllae Bunge s.l. (Gentianaceae): evidence from the nucleotide sequence of the internal transcribed spacer of nuclear ribosome DNA. Bot. J. Linn. Soc. 123: 25-43.
    Yuan, Y. M., P. Küpfer, and L. Zeltner. 1998. Chromosomal evolution of Gentiana and Jaeschkea (Gentianaceae), with further documentation of chromosome data for 35 species from western China. Pl. Syst. Evol. 210: 231-247.
    Zeng, W. B. 1993. The passageway of the flora migration on both sides of the Taiwan strait in Pleistocene epoch. Acta Bot. Yunnanica 16: 107-110.

    QR CODE