簡易檢索 / 詳目顯示

研究生: 黃國綸
Huang, Guo-Lun
論文名稱: 以硼氫化鈉活化備製錳摻雜硒化鎘團簇物及鑑定
Synthesis and Characterizations of Mn-doped (CdSe)13 Activated by NaBH4
指導教授: 劉沂欣
Liu, Yi-Hsin
口試委員: 李祐慈 黃信炅 劉沂欣
口試日期: 2021/09/28
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 96
中文關鍵詞: 零維結構硒化鎘稀磁性半導體模板法中孔洞沸石材料魔術尺寸團簇物
英文關鍵詞: zero-dimension, cadmium selenide, diluted magnetic semiconductors, template, mesoporous zeolite nanoparticles, magic-size clusters
研究方法: 實驗設計法主題分析
DOI URL: http://doi.org/10.6345/NTNU202101672
論文種類: 學術論文
相關次數: 點閱:187下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究第一部份利用過去魔術尺寸硒化鎘奈米團簇物之合成方式,並以元素硒粉末代替價格昂貴的硒脲作為合成之前驅物在室溫下進行合成,透過紫外光-可見光譜儀、X光粉末繞射儀、元素分析以及固態核磁共振光譜儀,證實其同樣為雙生團簇物之結構。後續引入具有未成對電子的過度金屬錳離子,作為光學與磁性之改質,藉由穿透式電子顯微鏡、X光粉末繞射、可見光光譜儀、螢光光譜儀、X光吸收光譜延伸精細結構、電子順磁共振光譜儀、超導量子干涉儀以及磁圓偏振二色性光譜,確認形貌、晶體與電子結構、化學配位環境、未成對電子的存在,並探討錳摻雜之奈米團簇物之磁性性質與磁光性質的改變。
    我們在錳摻雜之奈米團簇物觀察到了反鐵磁性,在第二部分以高表面積之中孔洞沸石奈米粒子 (mesoporous zeolite nanoparticles, MZNs) 做為硬模板,在吸附[(CdSe)13]2限制奈米團簇物生長的同時,也試著分散具有磁性錳離子,藉由孔洞材料高介電的性質,改善錳-錳之間自旋的耦合作用。此外,中孔氧化石墨烯奈米粒子 (mesoporous graphene-oxide nanoparticles, MGNs) 做為模板時可增進導電性,未來欲結合中孔洞薄膜材料的生長,進行鑑定探討及討探索於稀磁性半導體之應用可能性。

    In this study, we use selenium powder instead of expensive selenourea as the precursor to synthesize (CdSe)13 nanoclusters at room temperature. Ultraviolet-visible absorption spectroscopy (UV-vis), elemental analysis (EA) and solid-state nuclear magnetic resonance spectroscopy (ssNMR) confirmed that it is also the twin clusters. Magnesium ions were introduced to dope the clusters, showing unique phosphorescence, magneto optical and magnetic properties. The characterizations of compositions, electronic and spin structure were assured by UV-vis, X-ray powder diffraction (XRD), infrared spectroscopy (IR), extended X-ray absorption fine structure (EXAFS), electron paramagnetic resonance, magnetic circular dichroism spectrophotometer (MCD) and superconducting quantum interference device magnetometer (SQUID).
    We have observed anti-ferromagnetism in Mn-doped (CdSe)13. In the second part, mesoporous zeolite nanoparticles (MZNs) with high surface area were used as hard templates to adsorb (CdSe)13, while limiting the growth of clusters, we also try to disperse magnetic manganese ions. In addition, Mn-doped (CdSe)13@MZNs can be created when mesoporous graphene-oxide nanoparticles (MGNs) were introduced. Charge separation can be observed by fluorescence quenching. Mn-doped (CdSe)13 combined with MGN show great candidate for catalytic applications.

    謝誌 i 摘要 ii Abstract iii 目錄 iv 圖索引 viii 表索引 xii 第一章 緒論 - 1 - 1.1 稀磁性半導體之概要 - 1 - 1.1.1 磁性記憶體之發展 - 2 - 1.1.2 稀磁性半導體面臨之挑戰 - 5 - 1.2 零維奈米團簇物 - 6 - 1.3 錳摻雜之零維團簇物 - 10 - 1.4 自旋-自旋耦合 - 14 - 1.4.1 孔洞材料之耦合調控 - 16 - 1.5 研究動機 - 17 - 第二章 實驗方法 - 18 - 2.1 化學藥品 - 18 - 2.2 雙生(CdSe)13奈米團簇物之合成 - 19 - 2.2.1 硒前驅物 - 19 - 2.2.2 鎘前驅物 - 19 - 2.2.3 硒化鎘奈米團簇物 - 20 - 2.3 合成摻雜錳之硒化鎘奈米團簇物 - 21 - 2.4 中孔洞材料內生長(CdSe)13 - 23 - 2.5 儀器鑑定 - 24 - 2.5.1 穿透式電子顯微鏡 ( TEM ) - 24 - 2.5.2 掃描式電子顯微鏡 ( SEM ) - 24 - 2.5.3 場發射掃描穿透式球差修正電子顯微鏡 ( HRTEM ) - 24 - 2.5.4 紫外-可見光吸收光譜儀 ( UV-vis ) - 25 - 2.5.5 螢光光譜儀 ( PL ) - 25 - 2.5.6 紅外光譜儀 ( FT-IR ) - 25 - 2.5.7 X光粉末繞射儀 ( PXRDs ) - 25 - 2.5.8 X光吸收光譜-吸收X光延伸精細結構 ( EXAFS ) - 26 - 2.5.9 元素分析儀 ( EA ) - 27 - 2.5.10 固態核磁共振儀及魔術角度旋轉技術 ( ssNMR ) - 27 - 2.5.11 交叉極化與異核交聯感應技術 ( CP, HETCOR ) - 27 - 2.5.12 電子順磁共振光譜儀 ( EPR ) - 28 - 2.5.13 磁圓偏振二色性光譜儀 ( MCD ) - 28 - 2.5.14 超導量子干涉磁量儀 ( SQUID ) - 29 - 2.5.15 感應耦合電漿放射光譜儀 ( ICP-OES ) - 30 - 第三章 結果與討論 - 31 - 3.1 前驅物對團簇物合成之影響與探討 - 31 - 3.1.1 硒先驅物之比較 - 31 - 3.1.2 團簇物形貌 - 32 - 3.1.3 團簇物尺寸及晶型 - 34 - 3.1.4 元素組成 - 37 - 3.1.5 化學配位環境 - 40 - 3.1.6 電子結構與能隙 - 46 - 3.2錳摻雜團簇物之鑑定與性質探討 - 48 - 3.2.1 元素組成 - 48 - 3.2.2 團簇物形貌 - 50 - 3.2.3 晶格收縮 - 51 - 3.2.4 化學配位環境 - 53 - 3.2.5 DFT理論計算 - 57 - 3.2.6 電子結構與能隙 - 58 - 3.2.7 摻雜對能隙之影響 - 61 - 3.3 硒化鎘團簇物之磁性探討 - 63 - 3.3.1 自旋光譜 - 63 - 3.3.2 磁光躍遷 - 67 - 3.3.3 逆磁性特徵 - 72 - 3.3.4 鐵磁性與超順磁性特徵 - 76 - 3.3.5 反鐵磁性特徵 - 78 - 3.3.6 巨大有效磁矩 (自旋極化) - 79 - 3.4 空間限制團簇物之生長 - 80 - 3.4.1 前驅物濃度效應 - 80 - 3.4.2 載體表面修飾 - 84 - 3.4.3 電子結構與能隙 - 87 - 第四章 結論 - 90 - 參考資料 - 91 -

    1. Tehrani, S.; Chen, E.; Durlam, M.; DeHerrera, M.; Slaughter, J. M.; Shi, J.; Kerszykowski, G., High density submicron magnetoresistive random access memory (invited). Journal of Applied Physics 1999, 85 (8), 5822-5827.
    2. Wolf, S. A.; Awschalom, D. D.; Buhrman, R. A.; Daughton, J. M.; von Molnár, S.; Roukes, M. L.; Chtchelkanova, A. Y.; Treger, D. M., Spintronics: A Spin-Based Electronics Vision for the Future. Science 2001, 294 (5546), 1488.
    3. Žutić, I.; Fabian, J.; Das Sarma, S., Spintronics: Fundamentals and applications. Reviews of Modern Physics 2004, 76 (2), 323-410.
    4. Ohno, H.; Chiba, D.; Matsukura, F.; Omiya, T.; Abe, E.; Dietl, T.; Ohno, Y.; Ohtani, K., Electric-field control of ferromagnetism. Nature 2000, 408 (6815), 944-946.
    5. Tanaka, M., Ferromagnet/semiconductor hybrid structures grown by molecular-beam epitaxy. Journal of Crystal Growth 1999, 201-202, 660-669.
    6. Singh, S. B.; Limaye, M. V.; Date, S. K.; Gokhale, S.; Kulkarni, S. K., Iron substitution in CdSe nanoparticles: Magnetic and optical properties. Physical Review B 2009, 80 (23), 235421.
    7. Yu, J. H.; Liu, X.; Kweon, K. E.; Joo, J.; Park, J.; Ko, K.-T.; Lee, D. W.; Shen, S.; Tivakornsasithorn, K.; Son, J. S.; Park, J.-H.; Kim, Y.-W.; Hwang, G. S.; Dobrowolska, M.; Furdyna, J. K.; Hyeon, T., Giant Zeeman splitting in nucleation-controlled doped CdSe:Mn2+ quantum nanoribbons. Nature Materials 2010, 9 (1), 47-53.
    8. Yadav, A. N.; Bindra, J. K.; Jakhar, N.; Singh, K., Switching-on superparamagnetism in diluted magnetic Fe(iii) doped CdSe quantum dots. CrystEngComm 2020, 22 (10), 1738-1745.
    9. Delikanli, S.; He, S.; Qin, Y.; Zhang, P.; Zeng, H.; Zhang, H.; Swihart, M., Room temperature ferromagnetism in Mn-doped CdS nanorods. Applied Physics Letters 2008, 93 (13), 132501.
    10. Ohno, H.; Shen, A.; Matsukura, F.; Oiwa, A.; Endo, A.; Katsumoto, S.; Iye, Y., (Ga,Mn)As: A new diluted magnetic semiconductor based on GaAs. Applied Physics Letters 1996, 69 (3), 363-365.
    11. Baibich, M. N.; Broto, J. M.; Fert, A.; Van Dau, F. N.; Petroff, F.; Etienne, P.; Creuzet, G.; Friederich, A.; Chazelas, J., Giant Magnetoresistance of (001)Fe/(001)Cr Magnetic Superlattices. Physical Review Letters 1988, 61 (21), 2472-2475.
    12. Dieny, B.; Speriosu, V. S.; Metin, S.; Parkin, S. S. P.; Gurney, B. A.; Baumgart, P.; Wilhoit, D. R., Magnetotransport properties of magnetically soft spin‐valve structures (invited). Journal of Applied Physics 1991, 69 (8), 4774-4779.
    13. Bindra, J. K.; Gutsev, L. G.; Van Tol, J.; Singh, K.; Dalal, N. S.; Strouse, G. F., Experimental Validation of Ferromagnetic–Antiferromagnetic Competition in FexZn1–xSe Quantum Dots by Computational Modeling. Chemistry of Materials 2018, 30 (6), 2093-2101.
    14. Ghosh, A.; Paul, S.; Raj, S., Understanding of ferromagnetism in thiol capped Mn doped CdS nanocrystals. Journal of Applied Physics 2013, 114 (9), 094304.
    15. Li, C.; Hsu, S.-C.; Lin, J.-X.; Chen, J.-Y.; Chuang, K.-C.; Chang, Y.-P.; Hsu, H.-S.; Chen, C.-H.; Lin, T.-S.; Liu, Y.-H., Giant Zeeman Splitting for Monolayer Nanosheets at Room Temperature. Journal of the American Chemical Society 2020, 142 (49), 20616-20623.
    16. Liu, Y.-H.; Chen, H.-Y.; Fan, H.-F.; Chen, Y.-H.; Wang, F., Unique Growth Pathway in Solution–Solid–Solid Nanowires: Cubic to Hexagonal Phase Transformation. ACS Omega 2020, 5 (29), 18441-18448.
    17. Erenturk, B.; Gurbuz, S.; Corbett, R. E.; Claiborne, S.-A. M.; Krizan, J.; Venkataraman, D.; Carter, K. R., Formation of Crystalline Cadmium Selenide Nanowires. Chemistry of Materials 2011, 23 (14), 3371-3376.
    18. Zheng, W.; Kumar, P.; Washington, A.; Wang, Z.; Dalal, N. S.; Strouse, G. F.; Singh, K., Quantum Phase Transition from Superparamagnetic to Quantum Superparamagnetic State in Ultrasmall Cd1–xCr(II)xSe Quantum Dots? Journal of the American Chemical Society 2012, 134 (4), 2172-2179.
    19. Zhang, B.; Zhu, T.; Ou, M.; Rowell, N.; Fan, H.; Han, J.; Tan, L.; Dove, M. T.; Ren, Y.; Zuo, X.; Han, S.; Zeng, J.; Yu, K., Thermally-induced reversible structural isomerization in colloidal semiconductor CdS magic-size clusters. Nature Communications 2018, 9 (1), 2499.
    20. Landry, M. L.; Morrell, T. E.; Karagounis, T. K.; Hsia, C.-H.; Wang, C.-Y., Simple Syntheses of CdSe Quantum Dots. Journal of Chemical Education 2014, 91 (2), 274-279.
    21. Rabouw, F. T.; de Mello Donega, C., Excited-State Dynamics in Colloidal Semiconductor Nanocrystals. Topics in Current Chemistry 2016, 374 (5), 58.
    22. Wu, S.-H.; Mou, C.-Y.; Lin, H.-P., Synthesis of mesoporous silica nanoparticles. Chemical Society Reviews 2013, 42 (9), 3862-3875.
    23. Yang, X.; Pu, C.; Qin, H.; Liu, S.; Xu, Z.; Peng, X., Temperature- and Mn2+ Concentration-Dependent Emission Properties of Mn2+-Doped ZnSe Nanocrystals. Journal of the American Chemical Society 2019, 141 (6), 2288-2298.
    24. Kudera, S.; Zanella, M.; Giannini, C.; Rizzo, A.; Li, Y.; Gigli, G.; Cingolani, R.; Ciccarella, G.; Spahl, W.; Parak, W. J.; Manna, L., Sequential Growth of Magic-Size CdSe Nanocrystals. Advanced Materials 2007, 19 (4), 548-552.
    25. Cossairt, B. M.; Owen, J. S., CdSe Clusters: At the Interface of Small Molecules and Quantum Dots. Chemistry of Materials 2011, 23 (12), 3114-3119.
    26. Kasuya, A.; Sivamohan, R.; Barnakov, Y. A.; Dmitruk, I. M.; Nirasawa, T.; Romanyuk, V. R.; Kumar, V.; Mamykin, S. V.; Tohji, K.; Jeyadevan, B.; Shinoda, K.; Kudo, T.; Terasaki, O.; Liu, Z.; Belosludov, R. V.; Sundararajan, V.; Kawazoe, Y., Ultra-stable nanoparticles of CdSe revealed from mass spectrometry. Nature Materials 2004, 3 (2), 99-102.
    27. Bullen, C. R.; Mulvaney, P., Nucleation and Growth Kinetics of CdSe Nanocrystals in Octadecene. Nano Letters 2004, 4 (12), 2303-2307.
    28. Siy, J. T.; Brauser, E. M.; Bartl, M. H., Low-temperature synthesis of CdSe nanocrystal quantum dots. Chemical Communications 2011, 47 (1), 364-366.
    29. Wang, Y.; Liu, Y.-H.; Zhang, Y.; Kowalski, P. J.; Rohrs, H. W.; Buhro, W. E., Preparation of Primary Amine Derivatives of the Magic-Size Nanocluster (CdSe)13. Inorganic Chemistry 2013, 52 (6), 2933-2938.
    30. Nguyen, K. A.; Day, P. N.; Pachter, R., Understanding Structural and Optical Properties of Nanoscale CdSe Magic-Size Quantum Dots: Insight from Computational Prediction. The Journal of Physical Chemistry C 2010, 114 (39), 16197-16209.
    31. Nguyen, K. A.; Pachter, R.; Day, P. N., Computational Prediction of Structures and Optical Excitations for Nanoscale Ultrasmall ZnS and CdSe Clusters. Journal of Chemical Theory and Computation 2013, 9 (8), 3581-3596.
    32. Hsieh, T.-E.; Yang, T.-W.; Hsieh, C.-Y.; Huang, S.-J.; Yeh, Y.-Q.; Chen, C.-H.; Li, E. Y.; Liu, Y.-H., Unraveling the Structure of Magic-Size (CdSe)13 Cluster Pairs. Chemistry of Materials 2018, 30 (15), 5468-5477.
    33. Yang, J.; Fainblat, R.; Kwon, S. G.; Muckel, F.; Yu, J. H.; Terlinden, H.; Kim, B. H.; Iavarone, D.; Choi, M. K.; Kim, I. Y.; Park, I.; Hong, H.-K.; Lee, J.; Son, J. S.; Lee, Z.; Kang, K.; Hwang, S.-J.; Bacher, G.; Hyeon, T., Route to the Smallest Doped Semiconductor: Mn2+-Doped (CdSe)13 Clusters. Journal of the American Chemical Society 2015, 137 (40), 12776-12779.
    34. Wang, Y.; Liu, Y.-H.; Zhang, Y.; Wang, F.; Kowalski, P. J.; Rohrs, H. W.; Loomis, R. A.; Gross, M. L.; Buhro, W. E., Isolation of the Magic-Size CdSe Nanoclusters [(CdSe)13(n-octylamine)13] and [(CdSe)13(oleylamine)13]. Angewandte Chemie International Edition 2012, 51 (25), 6154-6157.
    35. Sun, H.; Buhro, W. E., Reversible Z-Type to L-Type Ligand Exchange on Zinc-Blende Cadmium Selenide Nanoplatelets. Chemistry of Materials 2020, 32 (13), 5814-5826.
    36. Wang, Y.; Zhang, Y.; Wang, F.; Giblin, D. E.; Hoy, J.; Rohrs, H. W.; Loomis, R. A.; Buhro, W. E., The Magic-Size Nanocluster (CdSe)34 as a Low-Temperature Nucleant for Cadmium Selenide Nanocrystals; Room-Temperature Growth of Crystalline Quantum Platelets. Chemistry of Materials 2014, 26 (7), 2233-2243.
    37. Maity, A. R.; Palmal, S.; Basiruddin, S. K.; Karan, N. S.; Sarkar, S.; Pradhan, N.; Jana, N. R., Doped semiconductor nanocrystal based fluorescent cellular imaging probes. Nanoscale 2013, 5 (12), 5506-5513.
    38. Zhou, R.; Sun, S.; Li, C.; Wu, L.; Hou, X.; Wu, P., Enriching Mn-Doped ZnSe Quantum Dots onto Mesoporous Silica Nanoparticles for Enhanced Fluorescence/Magnetic Resonance Imaging Dual-Modal Bio-Imaging. ACS Applied Materials & Interfaces 2018, 10 (40), 34060-34067.
    39. Archer, P. I.; Santangelo, S. A.; Gamelin, D. R., Direct Observation of sp−d Exchange Interactions in Colloidal Mn2+- and Co2+-Doped CdSe Quantum Dots. Nano Letters 2007, 7 (4), 1037-1043.
    40. Mikulec, F. V.; Kuno, M.; Bennati, M.; Hall, D. A.; Griffin, R. G.; Bawendi, M. G., Organometallic Synthesis and Spectroscopic Characterization of Manganese-Doped CdSe Nanocrystals. Journal of the American Chemical Society 2000, 122 (11), 2532-2540.
    41. Na, C. W.; Han, D. S.; Kim, D. S.; Kang, Y. J.; Lee, J. Y.; Park, J.; Oh, D. K.; Kim, K. S.; Kim, D., Photoluminescence of Cd1-xMnxS (x ≤ 0.3) Nanowires. The Journal of Physical Chemistry B 2006, 110 (13), 6699-6704.
    42. Beaulac, R.; Archer, P. I.; Ochsenbein, S. T.; Gamelin, D. R., Mn2+-Doped CdSe Quantum Dots: New Inorganic Materials for Spin-Electronics and Spin-Photonics. Advanced Functional Materials 2008, 18 (24), 3873-3891.
    43. Kuno, M.; Nirmal, M.; Bawendi, M. G.; Efros, A.; Rosen, M., Magnetic circular dichroism study of CdSe quantum dots. The Journal of Chemical Physics 1998, 108 (10), 4242-4247.
    44. Barrows, C. J.; Fainblat, R.; Gamelin, D. R., Excitonic Zeeman splittings in colloidal CdSe quantum dots doped with single magnetic impurities. Journal of Materials Chemistry C 2017, 5 (21), 5232-5238.
    45. Han, B.; Gao, X.; Lv, J.; Tang, Z., Magnetic Circular Dichroism in Nanomaterials: New Opportunity in Understanding and Modulation of Excitonic and Plasmonic Resonances. Advanced Materials 2020, 32 (41), 1801491.
    46. Magana, D.; Perera, S. C.; Harter, A. G.; Dalal, N. S.; Strouse, G. F., Switching-on Superparamagnetism in Mn/CdSe Quantum Dots. Journal of the American Chemical Society 2006, 128 (9), 2931-2939.
    47. Dietl, T., A ten-year perspective on dilute magnetic semiconductors and oxides. Nature Materials 2010, 9 (12), 965-974.
    48. Larson, B. E.; Hass, K. C.; Ehrenreich, H.; Carlsson, A. E., Exchange mechanisms in diluted magnetic semiconductors. Solid State Communications 1985, 56 (4), 347-350.
    49. Bradshaw, L. R.; May, J. W.; Dempsey, J. L.; Li, X.; Gamelin, D. R., Ferromagnetic excited-state Mn${}^{2+}$ dimers in Zn${}_{1ensuremath{-}x}$MnxSe quantum dots observed by time-resolved magnetophotoluminescence. Physical Review B 2014, 89 (11), 115312.
    50. Goede, O.; Thong, D. D., Energy Transfer Processes in (Zn, Mn)S Mixed Crystals. physica status solidi (b) 1984, 124 (1), 343-353.
    51. Yuan, X.; Ji, S.; De Siena, M. C.; Fei, L.; Zhao, Z.; Wang, Y.; Li, H.; Zhao, J.; Gamelin, D. R., Photoluminescence Temperature Dependence, Dynamics, and Quantum Efficiencies in Mn2+-Doped CsPbCl3 Perovskite Nanocrystals with Varied Dopant Concentration. Chemistry of Materials 2017, 29 (18), 8003-8011.
    52. Muckel, F.; Yang, J.; Lorenz, S.; Baek, W.; Chang, H.; Hyeon, T.; Bacher, G.; Fainblat, R., Digital Doping in Magic-Sized CdSe Clusters. ACS Nano 2016, 10 (7), 7135-7141.
    53. Aulakh, D.; Liu, L.; Varghese, J. R.; Xie, H.; Islamoglu, T.; Duell, K.; Kung, C.-W.; Hsiung, C.-E.; Zhang, Y.; Drout, R. J.; Farha, O. K.; Dunbar, K. R.; Han, Y.; Wriedt, M., Direct Imaging of Isolated Single-Molecule Magnets in Metal–Organic Frameworks. Journal of the American Chemical Society 2019, 141 (7), 2997-3005.
    54. Laskowska, M.; Bałanda, M.; Fitta, M.; Dulski, M.; Zubko, M.; Pawlik, P.; Laskowski, Ł., Magnetic behaviour of Mn12-stearate single-molecule magnets immobilized inside SBA-15 mesoporous silica matrix. Journal of Magnetism and Magnetic Materials 2019, 478, 20-27.
    55. Pan, A.; Wu, Y.; Yan, K.; Yu, Y.; Jurow, M. J.; Ren, B.; Zhang, C.; Ding, S.; He, L.; Liu, Y., Stable Luminous Nanocomposites of Confined Mn2+-Doped Lead Halide Perovskite Nanocrystals in Mesoporous Silica Nanospheres as Orange Fluorophores. Inorganic Chemistry 2019, 58 (6), 3950-3958.
    56. Gilmore, R. H.; Lee, E. M. Y.; Weidman, M. C.; Willard, A. P.; Tisdale, W. A., Charge Carrier Hopping Dynamics in Homogeneously Broadened PbS Quantum Dot Solids. Nano Letters 2017, 17 (2), 893-901.
    57. Ratcliffe, C. I.; Yu, K.; Ripmeester, J. A.; Badruz Zaman, M.; Badarau, C.; Singh, S., Solid state NMR studies of photoluminescent cadmium chalcogenide nanoparticles. Physical Chemistry Chemical Physics 2006, 8 (30), 3510-3519.
    58. Del Ben, M.; Havenith, R. W. A.; Broer, R.; Stener, M., Density Functional Study on the Morphology and Photoabsorption of CdSe Nanoclusters. The Journal of Physical Chemistry C 2011, 115 (34), 16782-16796.
    59. Efros, A. L.; Rosen, M.; Kuno, M.; Nirmal, M.; Norris, D. J.; Bawendi, M., Band-edge exciton in quantum dots of semiconductors with a degenerate valence band: Dark and bright exciton states. Physical Review B 1996, 54 (7), 4843-4856.
    60. Barrows, C. J.; Vlaskin, V. A.; Gamelin, D. R., Absorption and Magnetic Circular Dichroism Analyses of Giant Zeeman Splittings in Diffusion-Doped Colloidal Cd1–xMnxSe Quantum Dots. The Journal of Physical Chemistry Letters 2015, 6 (15), 3076-3081.
    61. Dhar, S.; Pérez, L.; Brandt, O.; Trampert, A.; Ploog, K. H.; Keller, J.; Beschoten, B., Gd-doped GaN: A very dilute ferromagnetic semiconductor with a Curie temperature above 300 K. Physical Review B 2005, 72 (24), 245203.

    下載圖示
    QR CODE