研究生: |
陳政修 Chen, Zheng-Xiu |
---|---|
論文名稱: |
大學生科學本質觀之評析 A Study on College Students' Views of the Nature of Science |
指導教授: |
劉湘瑤
Liu, Shiang-Yao |
口試委員: | 林淑梤 顏妙璇 劉湘瑤 |
口試日期: | 2021/07/28 |
學位類別: |
碩士 Master |
系所名稱: |
科學教育研究所 Graduate Institute of Science Education |
論文出版年: | 2021 |
畢業學年度: | 109 |
語文別: | 中文 |
論文頁數: | 101 |
中文關鍵詞: | 大學生 、分析歸納法 、科學本質 、VNOS開放式問卷 |
英文關鍵詞: | college student, analytic induction method, nature of science, VNOS open-ende questionnaire |
DOI URL: | http://doi.org/10.6345/NTNU202101536 |
論文種類: | 學術論文 |
相關次數: | 點閱:117 下載:17 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究旨在利用科學本質問卷研究不同學院的大學生經過九年一貫國民義務教育以及高中科學課程後,其科學本質觀在七大面向的表現,包含「經驗性」、「暫時性」、「理論負載性」、「創造性」、「社會文化影響」、「推論性」以及「科學理論與科學定律的關係」。本研究工具是由Lederman、Abd-El-Khalick、Bell與Schwartz (2002) 所設計的VNOS-C量表的中譯版本 (Liu & Lederman,2007) 共八題開放式問卷。透過分析歸納法(analytic induction)將75位修習科學本質課程大學生的作答,利用科學本質觀點分類表進行編碼,將其作答歸類成三種想法:樸質型想法(naïve)、過渡型想法(transitional)以及知識型想法(informed)。而後分析不同的學院間的差異,並進一步與他國(中國、加拿大、美國)相關研究相比較。研究結果歸納如下:
一、超過一半的受試者「經驗性」、「理論負載性」與「科學理論與科學定律的關係」三面向呈現質樸型想法。
二、課綱中著重的面向與受試者的科學本質觀層次無明顯相關,反而課綱著重的「經驗性」面向,受試者呈現較高比例的樸質型觀點。
三、理學院在「經驗性」面向上明顯優於工程學院;文學院在「暫時性」與「社會文化影響」面向上知識型觀點的比例高於其它學院;教育學院在「推論性」面向上過渡型與知識型觀點的比例高於其它學院。
四、「科學理論與科學定律的關係」為各國整體大學生中知識型觀點比例最低的面向;並且我國理學院學生在「社會文化影響」面向得分較高,反之「理論負載性」面向得分較低。
綜合以上結果,分別對科學本質觀分類表及未來研究者提出相關建議。
This study mainly uses an open-ended questionnaire to assess the views of nature of science (NOS) of undergraduate students, who have finished Grade 1-9 science curriculum and high school science education. The main purpose of this research is to examine the differences in understanding the seven aspects of NOS of these students among different colleges. The aspects of NOS are: “empirically based,” “tentative,” “theory-ladenness,” “involved human creativity and imagination”, “socially and culturally embedded”, “distinction between observation and inference,” and “function of, and relationship between scientific theories and laws.” The research instrument containing eight open-ended questions called “Views of Nature of Science (VNOS-C)”was originally designed by Lederman, Abd-El-Khalick, Bell and Schwartz (2002) and has been translated into the Chinese version for studying in Taiwan (Liu & Lederman, 2007). Further this study adopts the analytic induction method to analyze questionnaire responses from 75 undergraduate students who took a general education course. A coding scheme is then created. Three levels are categorized to present students’ understandings on the seven NOS aspects: naïve, transitional, and informed. The follow-up comparisons are to search the differences between different colleges, and contrasts with related investigations in other countries (including China, Canada, the United States). The results of this study are summarized as follows:
1. Under the three NOS aspects of “empirically based,” “subjective,” and “function of, and relationship between scientific theories and laws”, more than half of the students hold naïve views.
2. There is no significant correlation between all categories in “Grade 1-9 Curriculum Guidelines” and the students’ views of NOS. On the contrary, the subjects presented a higher percentage of naïve views of NOS at the “empirically based” aspect that the curriculum guidelines focus on.
3. The students in College of Science perform significantly better than those in the College of Engineering in the aspect of “empirically based”. The proportion of informed views of nature of science in the “tentative” and “socially and culturally embedded” of the College of Arts is higher than other colleges. Students in the College of Education has higher proportion of informed or transitional views in the “Distinction between observation and inference” NOS aspect than students in other colleges.
4. “Function of, and relationship between scientific theories and laws” is the aspect with the lowest proportion of informed views among the overall college students in the four countries. The students of the College of Science in Taiwan get higher scores in the “socially and culturally embedded” aspect, while the “theory-ladenness” aspect scores lower.
Combining the above results, this study puts forward some suggestions to the codebook of NOS views and future researchers who are involved in the research topics of NOS.
中文文獻
李明昆、張簡玲娟(2016)。透過科學史培養科學本質觀的科技大學通識課程研究。通識教育學刊,17,9-34。
林兆聖(2003)。以原子發現科學史融入教學對學生科學本質觀影響之研究。國立高雄師範大學化學系碩士論文,高雄市。取自https://hdl.handle.net/11296/e22wmm
林夢婉(2011)。中美科學教師科學本質觀比較研究——兼及培訓對科學教師科學本質觀的影響。上海市華東師範大學教育學系專業碩士論文。取自https://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CMFD&filename=1011131307.nh
林淑梤、葉辰楨、張文華和陳素芬(2012)。運用明示和暗示科學本質文本對七年級學生學習演化單元的效益。科學教育學刊,20(4),367-392。
林陳涌(1995)。高中學生對於科學本質瞭解之研究。國科會專題研究成果報告(編號:NSC84-2511-S-003-083)。台北:行政院國科會科資中心。
林陳涌(1996)。「了解科學本質量表」之發展與效化。科學教育學刊,4(1),31-58。
林陳涌、鄭榮輝、張永達(2009)。融入科學史教學對高中學生的科學本質觀、對科學的態度以及學習成就的影響。科學教育學刊,17(2),93-109。
邱明富、高慧蓮(2004)。科學史融入教學以提昇國小學童科學本質觀之研究。國立台北師範學院學報,17(1),183-214。
侯香伶(2002)。科學探究活動中的科學本質面貌對國一生科學本質觀之影響。國立彰化師範大學科學教育研究所碩士論文,彰化縣。取自https://hdl.handle.net/11296/3uwzq3
姜志忠、張惠博、林淑梤、鄭一亭(2006)。物理史融入教學對提升學生科學認識論瞭解及學習成效之研究。科學教育學刊,14(6),637-661。
洪振方(1997)。科學史融入科學教學之探討。高雄師大學報,8,233-246。
洪振方(1998)。科學史、哲在科學教學之研究—科學史融入教學專業知能培育模式之建立(Ⅲ)。行政院國科會專題研究計劃成果報告(編號:NSC88-2511-S-017-007)。
翁秀玉(1997)。國小自然科學教師傳達科學本質之行動研究。國立彰化師範大學教育研究所碩士論文,彰化縣。 取自https://hdl.handle.net/11296/gvs597
翁秀玉和段曉林(1997)。科學史對國小六年級學生理解科學本質之成效。科學教育研究與發展,8,26-41。
高佳雯(2011)。中部地區職前與在職科學教師的科學本質觀與教學態度之研究。國立彰化師範大學生物學系碩士論文,彰化縣。 取自https://hdl.handle.net/11296/pf62hh
教育部(2000)。國內教育九年一貫課程綱要:「自然與生活科技」學習領域。台北:教育部。
教育部(2018)。十二年國民基本教育課程綱要國民中小學暨普通型高級中等學校自然科學領域。台北:教育部。
許良榮、蕭培玉(2007)。中小學之科學本質與科學史的教學需求之研究。科學教育學刊,15(1),1-23。doi:10.6173/CJSE.2007.1501.01
許玫理(1992)。我國國民中學自然科學教師科學哲學觀點之調查研究。國立彰化師範大學科學教育研究所碩士論文,彰化縣。 取自https://hdl.handle.net/11296/rh699y
許國忠、王靜如(2003)。科學本質教學初探。科學教育研究與發展季刊,33,15-29。
陳均伊(2010)。高中學生參與物理人才培育課程的學習成效之研究。物理教育學刊,11(1),23-43。
傅麗玉(1999)。科學家的不當行為故事在中等科學教育的價值與意義。科學教育學刊,7(3),281-298。
黃淑雅(2006)。透過中文版VOSTS1與VOSTS9之工具了解國小自然與生活科技領域教師科學本質觀之研究。國立新竹教育大學應用科學系碩士班碩士論文,新竹市。
楊桂瓊、林煥祥、洪瑞兒(2012)。以論證活動探討國小學童論證能力和科學本質之表現。科學教育學刊,22(2),1-26。
靳知勤(2007)。科學教育應如何提升學生的科學素養-台灣學術精英的看法。科學教育學刊,15(6),627-646。doi:10.6173/CJSE.2007.1506.02
劉俊庚、邱美虹(2012)。我國百年國中科學課程發展回顧與展望。科學教育,347,2-20.。
劉柏宏、劉湘瑤(2009)。數理科學史在技術院校通識課程實施之成效研究。行政院國家科學委員會專題研究計畫期末報告(編號NSC 96-2522-S-167-001-MY2)。
劉湘瑤(2016)。科學探究的教學與評量。科學研習,55(2),5-11。
劉湘瑤、李麗菁、蔡今中(2007)。科學認識觀與社會性科學議題抉擇判斷之相關性探討。科學教育學刊,15(3),335-356。
潘菁瑩(2010)。國中自然與生活科技教科書中科學史內容分析之研究。國立新竹教育大學數理研究所(自然組)碩士論文,新竹市。 取自https://hdl.handle.net/11296/wcen8b
蔡哲銘、邱美虹、曾茂仁、謝東霖(2020)。探討二階段專題導向的探究與實作課程中學生之學習成效。科學教育月刊,431,2-20。
蔡清田(2008)。DeSeCo能力三維論對我國十二年一貫課程改革的啟示。課程與教學,11(3),1-16。
蔡清田(2011)。課程改革中的核心素養之功能。教育科學期刊,10(1),203-217。doi:10.6388/JES.201106.0203
鄭秀如(1997)。科學史對學生科學知識本質觀及學習成就之影響。國立高雄師範大學科學教育學系碩士論文,未出版。
謝州恩、劉湘瑤(2013)。省思九年一貫自然與生活科技課程綱要中的科學本質內涵。科學教育研究與發展季刊,66,53-76。
謝甫宜、洪振方(2010)。不同教學方法增進學生科學本質學習成效之比較與分析。屏東教育大學學報-教育類,35,1-32。
蘇詠梅、鍾媚(2010)。科學探究中的“不科學”。亞太科學教育論壇,11(1)。
蘇雅雲(2007)。大一學生生物探究學習之科學本質觀與科學探究觀之研究。國立臺中教育大學科學應用與推廣學系科學教育碩士班碩士論文,台中市。 取自https://hdl.handle.net/11296/tz5g5e
西文文獻
Abd-El-Khalick, F., Waters, M., & Le, A. P. (2008). Representations of nature of science in high school chemistry textbooks over the past four decades. Journal of Research in Science Teaching, 45(7), 835-855.
Abimbola, I. 0. (1983). The relevance of the “new” philosophy of science for the science curriculum. School Science and Mathematics, 83(3), 181-192.
Aikenhead, Glen & Ryan, Alan. (1992). The development of a new instrument: ‘views on science-technology-society’ (VOSTS). Science Education, 76, 477-491.
American Association for the Advancement of Science (AAAS). (1993). Project 2061: Benchmarks for science literacy. New York: Oxford University Press.
Bell, R. L., Blair, L. M., Crawford, B. A., & Lederman, N. G. (2003). Just do it? impact of a science apprenticeship program on high school students' understandings of the nature of science and scientific inquiry. Journal of Research in Science Teaching, 40(5), 487-509. doi:10.1002/tea.10086
Bogdan, R., C., & Biklen, S., K. (2007). Qualitative research for education. An introduction to theories and methods, (5th ed.) Boston. MA: Pearson Education Inc.
Borich, G. D. (2013). Effective teaching methods: Research- based practice (8th ed.). Upper Saddle River, NJ: Pearson Education
Deng, F., Chai, C. S., Tsai, C. C., & Lin, T. J. (2014). Assessing South China (Guangzhou) high school students’ views on nature of science: a validation study. Science & Education, 23(4), 843-863.
Duschl, R. A. (2000). Making the nature of science explicit. In R. Millar, J. Leach, & J. Osborne (Eds.), Improving science education: The contribution of research (p. 187–206). Buckingham: Open University Press.
Hurd, P. D. (1958). Science literacy: Its meaning for American schools. Educational Leadership, 16(1), 13-16, 52.
Karakas, M. (2010). A case of one professor’s teaching and use of nature of science in an introductory chemistry course. The Qualitative Report, 15(1), 94-121.
Khishfe, R., & Abd-El-Khalick, F. (2002). The influence of explicit and reflective versus implicit inquiry-oriented instruction on sixth graders’ views of nature of science. Journal of Research in Science Teaching, 39(7), 551-578.
Kutluca, A. Y., Aydın, A. (2017). Changes in pre-service science teachers’ under-standings after being involved in explicit nature of science and socioscientific argumentation processes. Science & Education, 26, 637-668.
Lederman, N. G., & O’Malley, M. (1990). Students’ perceptions of tentativeness in science: Development, use, and sources of change. Science & Education, 74(2), 225-239.
Lederman, N. G., Abd-El-Khalick, F., Bell, R. L., & Schwartz, R. S. (2002). Views of nature of science questionnaire: Toward valid and meaningful assessment of learners’ conceptions of nature of science. Journal of Research in Science Teaching, 39, 497–521.
Lederman, N. G., Wade, P. D., & Bell, R. L. (1998). Assessing the nature of science: What is the nature of our assessments? Science and Education, 7(6), 595-615. doi:10.1023/A:1008601707321
Liu, S. Y., & Lederman, N. G. (2007). Exploring prospective teachers’ worldviews and conceptions of nature of science. International Journal of Science Education, 29(10), 1281-1307
Ma, H. (2009). Chinese secondary school science teachers’ understanding of the nature of science-emerging from their views of nature. Research in Science Education, 39(5), 701–724.
Matkins, J. J., & Bell, R. L. (2007). Awakening the scientist inside: Global climate change and the nature of science in an elementary science methods course. Journal of Science Teacher Education, 18(2), 137-163. doi:10.1007/s10972-006-9033-4
McComas, W. F. (1998). The principal elements of the nature of science: dispelling the myths. In W. f. McComas (Ed.), The Nature of Science in Science Education (p. 53-70). Dordrecht, The Netherlands: Kluwer Academic Publishers.
Miller, J. D. (1998). The measurement of civic scientific literacy. Public Understanding of Science, 7, 203-223.
National Research Council (1995). National Science Education Standards. Alexandria, Virginia: National Academic Press.
Nussbaum, J. (1989). Classroom conceptual change: philosophical perspectives. International Journal of Science Education, 11, 530-540.
Osborne, J., Colins, S., Ratcliffe, M., Millar, R., & Duschl, R. (2003). What “ideas-about-science” should be taught in school science? A Delphi study of the expert community. Journal of Research in Science Teaching, 40(7), 692-720.
Shi, W. Z., & Wang, J. (2017). Comparison on views of nature of science between math and physics students. Journal of Baltic Science Education, 16(1), 77-85.
Wheeler, L. B., Mulvey, B. K., Maeng, J. L., Librea-Carden, M. R., & Bell, R. L. (2019). Teaching the teacher: Exploring STEM graduate students’ nature of science conceptions in a teaching methods course. International Journal of Science Education, 41(14), 1905-1925.
Zhang, G., Li, Y., Zhou, G., & Ho, S. W. Y. (2021). Exploring pre-service science teachers’ perspectives on the nature of science: A comparative study between China and Canada. ECNU Review of Education,1-17.