簡易檢索 / 詳目顯示

研究生: 吳沛哲
Wu, Pei-Che
論文名稱: 大型超低場磁振造影系統架設與特性研究
The Development and Characteristization of Large Ultra-low-field Nuclear Magnetic Resonance Image System
指導教授: 廖書賢
Liao, Shu-Hsien
學位類別: 碩士
Master
系所名稱: 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 75
中文關鍵詞: 低場磁振造影超導量子干涉元件預先極化技術
英文關鍵詞: Low-field MRI system, SQUID, Pre-polarization technology
DOI URL: https://doi.org/10.6345/NTNU202204213
論文種類: 學術論文
相關次數: 點閱:109下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本研究中,我們結合了預先極化技術以及超導量子干涉元件 ( Superconducting quantum interference device, SQUID ) 開發了大型低場核磁共振及核磁造影系統。系統主要由均勻磁場、預極化線圈、脈衝線圈、SQUID、及三個維度的梯度線圈所組成。為了抵銷地球磁場的雜訊,我們設計了一對抵銷地球磁場的線圈,並將系統放置於屏蔽屋之內,來降低環境雜訊對系統的影響。在磁共振訊號量測中,經由梯度磁場補償提高了系統磁場的均勻度後,並對內徑10公分接收線圈做最佳化。使400毫升去離子水樣品的磁共振訊號頻譜線寬可以從原本的15赫茲縮減到1赫茲,且訊雜比由21.14提高到340.6。在磁振造影量測中,我們對不同大小的水樣品進行二維平面造影,使用相位編碼、頻率編碼的造影方法,均能得到完整的樣品影像,驗證本系統的空間解析度可以達到5毫米 ; 在三維造影,我們成功將3cm厚的樣品成功切成6個切面,造影解析度也進一步提升至5mm x 5mm x 1cm。新系統的樣品量測範圍遠遠大於從舊系統的量測面積,從原本的內徑6公分圓面積擴大至內徑20公分的圓面積,增加未來使用低磁場系統來量測動物器官影像、人體腦部造影的可行性,且系統造價低,具有產業化的潛力。

    In this work, we combine pre-polarization technology and superconducting quantum interference device (SQUID) to developed a large low-field nuclear magnetic resonance image system. The system consists of a uniform magnetic field ( B0 coil), the pre-polarization coil (BP coil), RF pulse coil (B1 coil), SQUID, and the gradient coil (Gx、Gy、Gz)composed of three dimensions. In order to offset the noise of Earth's magnetic field, we designed a pair of offset the Earth's magnetic field coil (Bc coil). The coils and SQUID are put inside a shielded house and shielded cylinder which were made of aluminum to reduce the surrounding noise. We apply three dimensional gradient field to cancel the field inhomogeneity in our lab to obtain a narrow linewidth of NMR spectrum at 1 Hz and Signal Noise Ratio (SNR) increased from 21.14 to 340.6. In magnetic resonance imaging, we measured water specimen of different sizes and the 2-dimensional image are obtained with a high image resolution of 5mm. The 3-dimensional image of water phantom are demonstrated with a imaging resolution of 5 mm × 5mm × 1cm. Our high-Tc SQUID based MRI system shows the feasibility for biomedical imaging.

    誌謝 ............................................................................................................. I 摘要 ............................................................................................................ II 目錄 .......................................................................................................... IV 表目錄 ........................................................................................................ V 圖目錄 ...................................................................................................... VI 第1章 緒論............................................................................................... 1 第2章 實驗原理 ...................................................................................... 3 2.1 原子核特性 ................................................................................. 3 2.2 核磁共振原理 ............................................................................. 3 2.3 弛緩 ( Relaxation ) ................................................................... 10 2.4 自由感應衰減 ( Free Induction Decay) ................................... 12 2.5 磁振造影原理 ........................................................................... 14 2.5.1 頻率編碼 ........................................................................ 14 2.5.2 相位編碼 ........................................................................ 18 第3章 實驗架構 .................................................................................... 22 3.1 舊系統概述 ............................................................................... 22 3.2 新系統架構 ............................................................................... 23 3.2.1 系統架構介紹 ................................................................ 23 3.2.2 靜磁場 (Static Field) 設計及特性量測 ....................... 25 3.2.3 梯度磁場 (Gradient Field) 設計及特性量測 .............. 27 3.2.4 脈衝線圈 ........................................................................ 30 3.2.5 地球磁場補償線圈 ........................................................ 31 V 3.2.6 預極化磁場(Prepolarized Field)設計及特性量測 ........ 34 第4章 實驗結果 .................................................................................... 37 4.1 接收線圈最佳化 ....................................................................... 37 4.2 環境磁場最佳化 ....................................................................... 43 4.3 系統比較 ................................................................................... 47 4.3.1 不同系統(System) NMR訊號及造影比較 ................... 48 4.3.2 不同預極化線圈(BP coil) NMR訊號比較 ................... 53 4.4 核磁共振造影 ........................................................................... 56 4.4.1 二維平面磁振造影 ........................................................ 56 4.4.2 三維立體磁振造影 ........................................................ 62 4.5 新型繼電器對系統改良 ........................................................... 66 第5章 結論............................................................................................. 69 參考資料 ................................................................................................... 70

    [1] S. Appelt, A. Ben-Amar Baranga, C.J. Erickson, M.V. Romalis, A.R.Young, W. Happer “Theory of spin-exchange optical pumping of 3He and 129Xe”, Phys. Rev. A 58, 1412 (1998).
    [2] Shu-Hsien Liao, Kai-Wen Huang, Hong-Chang Yang*, Chang-Te Yen, M. J. Chen, Hsin-Hsien Chen, Herng-Er Horng*, and Shieh Yueh Yang, “Characterization of tumors using SQUID-detected nuclear magnetic resonance and imaging”,Appl. Phys. Lett. 97, 263701 (2010)
    [3] M. Goldman, H. Jo’hannesson, O. Axelsson, M. Karlsson, “Hyperpolarization of 13C through order transfer from parahydrogen: A new contrast agent for MRI ”,Magn.Reson. Imaging 23, 153 (2005)
    [4] G. Navon, Y.-Q. Song, T. Ro˜o˜m, S. Appelt, R.E. Taylor, A. Pines,” Enhancement of Solution NMR and MRI with Laser-Polarized Xenon”, Science 271, 1848 (1996).
    [5] S. Appelt, F.W. Ha‥sing, S. Baer-Lang, N.J. Shah, B. Blümich, “Enhancement of Solution NMR and MRI with Laser-Polarized Xenon”, Chem. Phys. Lett. 348, 263 (2001)
    [6] Shu-Hsien Liao and Herng-Er Horng, Hong-Chang Yang, and Shieh-Yueh Yang, “Longitudinal relaxation time detection using a high-Tc superconductive quantum interference device magnetmeter”,J. Appl. Phys. 102, 033914 (2007).
    [7] M.A. Espy, A.N. Matlachov, P.L. Volegov, J.C. Mosher, and R.H.Kraus Jr., ” SQUID-Based Simultaneous Detection of NMR and
    71
    Biomagnetic Signals at Ultra-Low Magnetic Fields”, IEEE Trans.Appl. Supercon. 15, 635 (2005).
    [8] A.H. Trabesinger, R. McDermott, S.K. Lee, M. Mu1ck, J. Clarke, and A. Pines, “ SQUID-Detected Liquid State NMR in Microtesla Fields“, J. Phys. Chem. A 108, 957-963 (2004).
    [9] R. McDermott, S.K. Lee, B. ten Haken, A.H. Trabesinger, A. Pines, and J. Clarke, “Microtesla MRI with a superconducting quantum interference Device”, Proc. Natl. Acad. Sci. USA 101, 7857 (2004).
    [10] M. Mössle, S. Busch, M. Hatridge, W. Myers, A. Pines, and J. Clarke, “SQUID-detected microtesla MRI: a new modality for tumor detection”, paper presented at 2006 Applied Superconductivity conference, Aug. 27-Sept.1, 2006, Seattle, Washington, USA.
    [11] Y. S. Greenberg, “Application of superconducting quantum interference devices to nuclear magnetic resonance,” Rev. Mod. Phys., vol. 70, 175(2002.)
    [12] R. McDermott, A. H. Trabesinger, M. Mück, E. L. Haln, A. Pines, and J. Clarke, “Liquid-state NMR and scalar couplings in microtesla magnetic fields,” Science, vol. 295, 2247( 2002.)
    [13] Y. Zhang, L. Qiu, H. Krause, S. Hartiwig, M. Burghoff, and L. Trahms,“Liquid state nuclear magnetic resonance at low fields using a nitrogencooled superconducting quantum interference device,” Appl. Phys. Lett.,vol. 90,182503(2007)
    [14] K. Schlenga, R. McDermott, J. Clarke, R. E. de Souza, A. Wong-Foy, and A. Pines, “Low-field magnetic resonance imaging with a high- Tc dc superconducting quantum interference device,” Appl. Phys. Lett.,
    72
    vol. 75,3695(1999)
    [15] H. C. Yang, S. H. Liao, H. E. Horng, S. L. Kuo, H. H. Chen, and S. Y. Yang, “Enhancement of nuclear magnetic resonance in microtesla magnetic field with prepolarization field detected with high-Tc superconducting quantum interference device,” Appl. Phys. Lett., vol. 88,252505( 2006.)
    [16] M. Burghoff, S. Hartwig, L. Trahms, and J. Bernarding, “Nuclear magnetic resonance in the nanoTesla range,” App. Phys. Lett., vol. 87, 054103(2005.)
    [17] L. Qiu, Y. Zhang, H. J. Krause, A. H. Braginski, M. Burghoff, and L. Trahms, “Nuclear magnetic resonance in the earth’s magnetic field using a nitrogen-cooled superconducting quantum interference device,”Appl. Phys. Lett., vol. 91, 072505(2007.)
    [18] S. H. Liao, H. E. Horng, H. C. Yang, and S. Y. Yang, “Longitudinal relaxation time detection using a high-Tc superconductive quantum interference device magnetometer,” J. Appl. Phys., vol. 102, 033914(2007.)
    [19] J. Clarke, M. Hatridge, and M. Mößle, “Resonance imaging in Microtesla,” Annu. Biomed. Eng., vol. 9,389( 2007.)
    [20] S. H. Liao, H. C. Yang, H. E. Horng, S. Y. Yang, H. H. Chen,D. W. Hwang, and L. P. Hwang, “Sensitive J-coupling spectroscopy using high-Tc superconducting quantum interference devices in magnetic fields as low as microteslas,” Supercond. Sci. Technol., vol. 22,045008(2009)
    [21] S. H. Liao, H. C. Yang, H. E. Horng, and S. Y. Yang, “Characterization
    73
    of magnetic nanoparticles as contrast agents in magnetic resonance imaging using high-Tc superconducting quantum interference devices in microtesla magnetic fields,” Supercond. Sci. Technol., vol. 22, 025003(2009).
    [22] H. C. Seton, J.S.M. Hutchison, D. M. Busell, “A 4.2 K receiver coil and SQUID amplifier used to improve the SNR of low-field magnetic resonance images of the human arm”,Meas. Sci. Technol. 8, 198 (1997).
    [23] S. Kumar, R. Mathews, S. G.. Haupt, D.K. Lathrop, M. Takigawa, J. R. Rozen, S. L. Brown, R. H. Koch, “Nuclear magnetic resonance using a high temperature superconducting quantum interference device”Appl. Phys. Lett. 70, 1037 (1997).
    [24] S. Kumar, W. F. Avrin, B. R. Whitecotton, “NMR of room temperature samples with a flux-locked dc SQUID” IEEE Trans. Magn. 32, 5261 (1996).
    [25] K. Schlenga, R. F. McDemott, J. Clarke, R. E. de Souza, A. Wong-Foy, A. Pines, “Low-Field Magnetic Resonance Imaging with a High-Tc dc Superconducting Quantum Interference Device,” Appl. Phys. Lett. 75, 3695 (1999).
    [26] N. Q. Fan, M. B. Heaney, J. Clarke, D. Newitt, L. L. Wald, E. L. Hahn, A. Bielecki, A. Pines, “Nuclear magnetic resonance with DC SQUID preamplifiers”IEEE Trans. Magn, vol. 25,1193(1989)
    [27] M. A. Espy, A. N. Matlachov, P. L. Volegov, J. C. Mosher, and R. H. Kraus, Jr. “SQUID-based simultaneous detection of NMR and
    74
    biomagnetic signals at ultra-low magnetic fields” IEEE Trans. Appl. Supercon. 15, 635 (2005).
    [28] M. Burghoff, S. Hartwig, L. Trahms, and J. Bernarding, “Nuclear magnetic resonance in the nanoTesla range”,Appl. Phys. Lett. 87, 054103 (2005)
    [29] W. Myers, D. Slichter, M. Hatridge, S. Busch, M. Mößle, R. McDermott,A. Trabesinger, and J. Clarke, “Calculated signal-to-noise ratio of MRI detected with SQUIDs and Faraday detectors in fields from 10 μT to 1.5 T,” J. Magn. Reson., vol. 186, 182, 2007.
    [30] V. S. Zotev, A. N. Matlachov, P. L. Volegov, H. J. Sandin, M. A. Espy,J. C. Mosher, A. V. Urbaitis, S. G. Newman, and R. H. Kraus, “Multichannel SQUID system for MEG and ultra-low-field MRI,” IEEE Trans.Appl. Supercond., vol. 17, 839, 2007.
    [31] M .A. Bernstein, K. F. King and X. J. Zhou, “Handbook of MRI Pulse Sequences.” Elsevier Academic Press, 960 (2004)
    [32] Joseph P. Hornak, Ph.D. (1996-2011),The Basics of MRI, 2013年7月3日取自於http://www.cis.rit.edu/htbooks/mri/
    [33] FMosher, Robert H. Kraus Jr. “Parallel MRI at microtesla fields”, Journal of Magnetic Resonance 192 ,197(2008)
    [34]Vadim S. Zotev *, Petr L. Volegov, Andrei N. Matlashov, Michelle A. Espy, John C. Mosher, Robert H. Kraus Jr. “Parallel MRI at microtesla fields”, Journal of Magnetic Resonance 192 ,197(2008)
    75
    [35] S. Godefroy, M. Fleury, F. Deflandre, and J.-P. Korb, “Temperature Effect on NMR Surface Relaxation in Rocks for Well Logging Applications ”J. Phys. Chem. B,106 , 11183-11190 (2002)

    無法下載圖示 本全文未授權公開
    QR CODE