簡易檢索 / 詳目顯示

研究生: 袁健傑
論文名稱: 超導量子干涉儀應用於光激發3He稀有氣體之磁共振研究
指導教授: 楊鴻昌
Yang, Hong-Chang
洪姮娥
Horng, Herng-Er
學位類別: 碩士
Master
系所名稱: 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
中文關鍵詞: 極化氣體核磁共振
論文種類: 學術論文
相關次數: 點閱:224下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要
    我們架設一套可以同時極化3He並且量測低磁場核磁共振的系統,其共振磁場約在10-4 T數量級,並比較直接利用超導量子干涉儀( SQUID )靠近極化腔作探測,量測極化氣體的核磁共振訊號,及利用線圈耦合訊號於超導量子干涉儀作為偵測,比較其訊雜比,而結果在113 μT的低磁場下,因為受限於加熱管路的限制,超導量子干涉儀無法很靠近極化腔,而利用線圈耦合3He氣體NMR訊號於超導量子干涉儀的方式下,得到的訊號雜訊比較佳,比起單純利用超導量子干涉儀感應訊雜比提升了百倍,而在改變耦合線圈的匝數又可使核磁共振訊號持續的增加,在調整線圈的參數後,最終的訊雜比約2200,

    第一章 緒論 1-1實驗研究動機…...………………………………………………..…….5 1-2 極化氣體簡介….………………………………………….…………...8 第二章 實驗原理 2-1 極化3He 原子核磁矩……………………………………..………....9 2-2核磁共振原理………………………………………………………….12 2-3 SQUID原理…………………………………………………………20 第三章 實驗架構 3-1 實驗系統總論…..……………………………………………………..24 3-2 加熱系統………………………………………………………………25 3-3 冷卻水系統…………………………………………………………..27 3-4 超導量子干涉儀量測 光激發3He氣體NMR訊號系統架設…….29   3-5 利用線圈耦合極化3He氣體NMR訊號於超導量子干涉儀量測系統之架設……………………………………………………………………...32 第四章 實驗結果及數據討論 4-1 SQUID 相關參數…………………………………………………..…36 4-2 SQUID 直接量測3He的NMR訊號…………………………………37 4-3線圈耦合極化3He之NMR訊號於超導屏蔽內SQUID測量………40 4-4 比較及討論……………………………………………………………51 第五章: 結論與未來的展望 5-1結論…………………………………………………………………….53 5-2未來的展望…………………………………………………………….54 參考文獻…………………………………………………………55

    Reference
    [1] H. C. Seton, D.M. Busell, J.S.M. Hutchison, I. Nicholson, D.J. Lurie, Phys. Med. Biol. 73, 2133 (1992).
    [2] H. C. Seton, J.S.M. Hutchison, D. M. Busell, Meas. Sci. Technol. 8, 198 (1997).
    [3] H. C. Seton, J.S.M. Hutchison, D. M. Busell, IEEE Trans. Appl. Supercon. 7, 3213 (1997).
    [4] Hong-Chang Yang,Shu-Hsien Liao, Herng-Er Horng,Shing-Ling Kuo,Hsin-Hsien Chen, and S. Y. Yang, Appl. Phys. Lett. 88, 252505 (2006)
    [5] S. Kumar, R. Mathews, S. G.. Haupt, D.K. Lathrop, M. Takigawa, J. R. Rozen, S. L. Brown, R. H. Koch, Appl. Phys. Lett. 70, 1037 (1997).
    [6] S. Kumar, W. F. Avrin, B. R. Whitecotton, IEEE Trans. Magn. 32, 5261 (1996).
    [7] K. Schlenga, R. F. McDemott, J. Clarke, R. E. de Souza, A. Wong-Foy, A. Pines, Appl. Phys. Lett. 75, 3695 (1999).
    [8] N. Q. Fan, M. B. Heaney, J. Clarke, D. Newitt, L. L. Wald, E. L. Hahn, A. Bielecki, A. Pines, IEEE Trans. Magn 25, 1193 (1989).
    [9] M. A. Espy, A. N. Matlachov, P. L. Volegov, J. C. Mosher, and R. H. Kraus, Jr. IEEE Trans. Appl. Supercon. 15, 635 (2005).
    [10] M. Burghoff, S. Hartwig, L. Trahms, and J. Bernarding, Appl. Phys. Lett. 87,054103 (2005)
    [11] A. N. Matlachov, P. L. Volegov, M. A. Espy, J. S. George, and R. H. Kraus Jr. J.
    Magnetic Resonance, 170, 1 (2004)
    [12] M. P. Augustine, A. Wong-Foy, J. L. Yarger, M. Tomaselli, A. Pines, D. M. Tonthat,and J. Clarke, Appl. Phys. Lett. 72, 1908 (1998).
    [13] J. J. Heckman, M. P. Ledbetter, and M. V. Romalis, Phy. Rev. Lett. 91, 067601-1(2003).
    [14] M. P. Ledbetter, and M.V. Romalis, Phys. Rev. Lett. 89, 287601-1 (2002).
    [15] R. E. de Souza, K. Schlenga, A. Wong-Foy, R. McDermott, A. Pines and John Clarke, J. Braz. Chem. Soc. 10, 307 (1999)
    [16] Dinh M. TonThat , M. Ziegeweid , Y. Q. Song , E.J. Munson , S. Appelt ,
    A. Pines , John Clarke Chemical Physics Letters 272 245-249 (1997)
    [17] E. Sassier, Y. Monfort, C. Gunther, D. Robbes, O. Moreau, and H. Gilles, Rev. Sci.Instrum. 70, 3040 (1999).
    [18] J. R. MacFall, H. C. Charles, R. D. Black, H. Middleton, J. C. Swartz, B. Saam, B. Driehuys, C. Erickson, W. Happer, G. D. Cates, G. A. Johnson and C. E. Ravin, Radiology 200, 553-558 (1996)
    [19] See for instance, Proceeding of the Nato Advanced Study Institute on SQUID sensors: Fundamentals, Fabrication, and Applications; (1996)
    [20] Ya. S. Greenberg, Reviews of Modern Physics Vol. 70, 175,No. 1, January (1998)

    無法下載圖示 本全文未授權公開
    QR CODE