簡易檢索 / 詳目顯示

研究生: 張元馨
Yuan-Hsin Chang
論文名稱: 楠梓仙溪森林土壤種子庫組成之研究
Composition of the soil seed bank in Nantzuhsienchi forest
指導教授: 王震哲
Wang, Jenn-Che
蘇夢淮
Su, Mong-Huai
學位類別: 碩士
Master
系所名稱: 生命科學系
Department of Life Science
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 108
中文關鍵詞: 土壤種子庫更新楠梓仙溪森林
英文關鍵詞: soil seed bank, regeneration, Nantzuhsienchi forest
論文種類: 學術論文
相關次數: 點閱:229下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 土壤種子庫為森林生態系更新之重要環節,亦是森林潛在植物社會。本研究調查臺灣亞熱帶山地雨林之楠梓仙溪森林土壤種子庫組成,配合先前進行的地被組成研究與喬木調查結果,藉以了解土壤種子庫與森林植被之關係,並探討土壤種子庫在森林更新中所扮演的角色。
    在2010年2月1日至3日期間,從75個長期監測的小苗動態樣區中鑽取直徑12 cm、深度15 cm的土壤核心樣本。將樣本分成四份,分別為L1層(落葉層)、L2層(深度0-5 cm)、L3層(深度5-10 cm)及L4層(深度10-15 cm)。將每份土壤樣本均勻分散於育苗盤中以利種子萌發,種子萌發後,鑑別物種並計算數量。
    截至2011年8月底為止,已萌發之種子共記錄76種植物,數量共計4,790顆,若換算成密度為5,650 m-2,而以L2層之種子密度最高,隨著深度增加種子數亦隨之減少。所萌發之種子多以不耐陰性植物為主,其中又以水麻(Debregeasia orientalis)和賊仔樹(Tetradium glabrifolium)數量最多;在地被或是林冠層占有高優勢度之樹種如長葉木薑子(Litsea acuminata)、假長葉楠(Machilus pseudolongifolia)、長尾尖葉櫧(Castanopsis cuspidata var. carlesii)等未在種子庫中發現其種子。以Motyka’s index計算樣區種子庫、地被組成與冠層樹種之相似性指數,結果發現種子庫與喬木、小苗庫的相似度較低,小苗庫與喬木的相似度較高,意指楠梓仙溪森林中種子庫所代表的潛在植物社會和現存之植被關聯度低。
    根據研究結果並配合地面樣區調查及喬木資料,我們可以推論當干擾發生時,耐陰性植物會以林下小苗庫來更新,而不耐陰性植物則是以種子的方式儲藏於土壤中形成土壤種子庫,等待森林孔隙發生以進行更新。

    The soil seed bank is an important link in regeneration of the forest ecosystem. It is considered an important potential seed source for the plant communities. The aim of the study is to investigate the composition of the soil seed bank of Nantzuhsienshi forest, a subtropical montane rain forest in Taiwan. We summarized the previous results of the understory and canopy composition, with the aim of understand the relationship between soil seed bank and forest vegetation, and discuss the role of soil seed bank in the forest regeneration.
    During Feb. 1 to Feb. 3, 2010, the soil samples were collected from 75 quadrats which were set up for monitoring seedling dynamics. For each quadrat, a soil core which diameter was 12 cm and depth was 15 cm was extracted. The soil core was then divided into four parts, namely L1 (litter layer), L2 (depth 0-5 cm), L3 (depth 5-10 cm) and L4 (depth 10-15 cm). Each part of the soil samples was evenly placed in a trap for seed germination. The species and abundance of seedlings were recorded.
    So far, seventy-six species were germinating. 4,790 seeds were recorded, and the average seed density was 5,650 m-2. Seed highest density was L2 layer, the number of seed was decrease with increase of depth. Most species from the seeds in soil seed bank were shade-intolerant species. Debregeasia orientalis and Tetradium glabrifolium were the most abundant species in the soil seed bank, which is incongruent with the understory and canopy composition reported in the previous study. The dominant species in understory or canopy layer e.g. Litsea acuminata, Machilus pseudolongifolia and Castanopsis cuspidata var. carlesii, we found no seeds in soil. Using Motyka’s index to calculate the similarity of soil seed bank, understory and canopy composition. Result indicated that the similarity indices between soil seed bank and understory seedling or canopy species were lower. The similarity indices between seedling and canopy species was higher. Means that the relational degree between potential plant community and existing vegetation was low in Nantzuhsienshi forest.
    According to the result of research. We can inferred that when disturbances create sites for generation, shade-tolerant species will regenerate from understory seedling. Shade-intolerant species can store seeds in soil, waiting for the occurrence of forest gap and regeneration.

    第一章、研究背景與目的 1 第二章、材料與方法 7 一、 研究區域環境概述 7 (1) 地理位置 7 (2) 水系、地質與土壤 7 (3) 氣候 7 (4) 樣區地形 11 (5) 植被概況 13 二、 研究方法 14 (1) 樣方劃設與土壤取樣 14 (2) 種子萌發 14 (3) 鑑定與紀錄 14 (4) 文獻引用 15 (5) 資料分析 17 第三章、 結果 21 一、 土壤種子庫組成與結構 21 二、 土壤種子庫之垂直分布 34 三、 土壤種子庫之水平分布 42 四、 種子庫、小苗庫、喬木之關係 53 第四章、討論 56 一、 土壤種子庫組成與結構 56 二、 土壤種子庫之垂直分布 67 三、 土壤種子庫之水平分布 70 四、 種子庫、小苗庫、喬木之關係 73 結論 79 參考文獻 80

    Amritphale, D. and S. K. Sharma. 2008. Classroom. Resonance 13:468-486.
    Aponte, C., G. Kazakis, D. Ghosn, and V. P. Papanastasis. 2010. Characteristics of the soil seed bank in Mediterranean temporary ponds and its role in ecosystem dynamics. Wetlands Ecology and Management 18:243-253.
    Bakker, J. P. and F. Berendse. 1999. Constraints in the restoration of ecological diversity in grassland and heathland communities. TRENDS in Ecology & Evolution 14:63-68.
    Barden, L. S. 1989. Repeatability in forest gap research: studies in the Great Smoky Mountains. Ecology 70:558-559.
    Bekker, R. M., J. P. Bakker, U. Grandin, R. Kalamees, P. Milberg, P. Poschlod, K. Thompson, and J. H. Willems. 1998. Seed size, shape and vertical distribution in the soil: indicators of seed longevity. Functional Ecology 12:834-842.
    Bigwood, D. W. and D. W. Inouye. 1988. Spatial pattern analysis of seed banks: an improved method and optimized sampling. Ecology 69:497-507.
    Bossuyt, B. and M. Hermy. 2001. Influence of land use history on seed banks in European temperate forest ecosystems: a review. Ecography 24:225-238.
    Bossuyt, B. and O. Honnay. 2008. Can the seed bank be used for ecological restoration? An overview of seed bank characteristics in European communities. Journal of Vegetation Science 19:875-884.
    Boufford, D. E., C.-F. Hsieh, C.-L. Huang, C.-S. Kuoh, H. Ohashi, C.-I. Peng, J.-L. Tsai, and K.-C. Yang. 2003. Flora of Taiwan, Volume Six. Second edition. Editorial Committee of the Flora of Taiwan, Department of Botany, National Taiwan University, Taipei, Taiwan.
    Brewer, R. and P. G. Merritt. 1978. Wind throw and tree replacement in a climax beech-maple forest. Oikos 30:149-152.
    Brokaw, N. V. L. and S. M. Scheiner. 1989. Species composition in gaps and structure of a tropical forest. Ecology 70:538-541.
    Canham, C. D. 1989. Different respones to gaps among shade-tollerant tree species. Ecology 70:548-550.
    Chambers, J. C. and J. A. MacMahon. 1994. A day in the life of a seed: movements and fates of seeds and their implications for natural and managed systems. Annual Review of Ecology and Systematics 25:263-292.
    Chang, E. R., R. L. Jefferies, and T. J. Carleton. 2001. Relationship between vegetation and soil seed banks in an arctic coastal marsh. Journal of Ecology 89:367-384.
    Cheke, A. S., W. Nanakorn, and C. Yankoses. 1979. Dormancy and dispersal of seeds of secondary forest species under the canopy of a primary tropical rain forest in northern Thailand. Biotropica 11:88-95.
    Chippindale, H. G. and W. E. J. Milton. 1934. On the viable seeds present in the soil beneath pastures. Journal of Ecology 22:508-531.
    Chou, F.-S., W.-C. Lin, Y.-H. Chen, and J.-B. Tsai. 2011. Seed fate of Castanopsis indica (Fagaceae) in a subtropical evergreen broadleaved forest. Botanical Studies 52.
    Dalling, J. W., M. D. Swaine, and N. C. Garwood. 1997. Soil seed bank community dynamics in seasonally moist lowland tropical forest, Panama. Journal of Tropical Ecology 13:659-680.
    Dalling, J. W., M. D. Swaine, and N. C. Garwood. 1998. Dispersal patterns and seed bank dynamics of pioneer trees in moist tropical forest. Ecology 79:564-578.
    Darwin, C. 1859. On the Origin of Species by Means of Natural Selection. John Murray, London.
    Du, X., Q. Guo, X. Gao, and K. Maa. 2007. Seed rain, soil seed bank, seed loss and regeneration of Castanopsis fargesii (Fagaceae) in a subtropical evergreen broad-leaved forest. Forest Ecology and Management 238:212-219.
    Falinski, J. B. 1978. Uprooted trees, their distribution and influence in the primeval forest biotope. Vegetatio 38:175-183.
    Fenner, M. 1985. Seed Ecology. Chapman and Hall Limited, New York.
    Fenner, M. and K. Thompson. 2005. The Ecology of Seeds. Cambridge University Press, United Kingdom.
    Fuentes, M. 2002. Seed dispersal and tree species diversity. TRENDS in Ecology & Evolution 17:550.
    Gaston, K. J. and J. I. Spicer. 2004. Biodiversity: An Introduction. 2 edition. Blackwell, Malden, MA.
    Guo, Q., P. W. Rundel, and D. W. Goodall. 1999. Structure of desert seed banks: Comparisons across four North American desert sites. Journal of Arid Environments 42:1-14.
    Hall, J. B. and M. D. Swaine. 1980. Seed stocks in Ghanaian forest soils. Biotropica 12:256-263.
    Hill, M. O. 1973. Diversity and evenness: A unifying notation and its consequences. Ecology 54:427-432.
    Hopkins, M. S. and A. W. Graham. 1983. The species composition of soil seed banks beneath lowland tropical rainforests in north Queensland, Australia. Biotropica 15:90-99.
    Howe, H. F. and J. Smallwood. 1982. Ecology of seed dispersal. Annual Review of Ecology and Systematics 13:201-228.
    Hyatt, L. A. and B. B. Casper. 2000. Seed bank formation during early secondary succession in a temperate deciduous forest. Journal of Ecology 88:516-527.
    Ibarra-Manríquez, G., M. M. Ramos, and K. Oyama. 2001. Seedling functional types in a lowland rain forest in Mexico. American Journal of Botany 88:1801-1812.
    Jutila, H. M. 2003. Germination in Baltic coastal wetland meadows: Similarities and differences between vegetation and seed bank. Plant Ecology 166:275-293.
    Leck, M. A., V. T. Parker, and R. L. Simpson. 1989. Tropical soil seed banks: A review.in N. C. Garwood, editor. Ecology of Soil Seed Banks. Academic Press Limited, San Diego, California.
    Lee, P. 2004. The impact of burn intensity from wildfires on seed and vegetative banks, and emergent understory in aspen-dominated boreal forests. Canadian Journal of Botany 82:1468-1480.
    Livingston, R. B. and M. L. Allessio. 1968. Buried viable seed in successional field and forest stands, Harvard Forest, Massachusetts. Bulletin of the Torrey Botanical Club 95:58-69.
    Matus, G., M. Pappa, and B. Tóthmérész. 2005. Impact of management on vegetation dynamics and seed bank formation of inland dune grassland in Hungary. Flora 200: 296-306.
    Molles, M. C. 2005. Ecology: Concepts and Applications. 3 edition. Margaret J. Kemp, New York.
    Molofsky, J. and C. K. Augspurger. 1992. The effect of leaf litter on early seedling establishment in a tropical forest. Ecology 73:68-77.
    Naka, k. 1982. Community dynamics of evergreen broadleaf forests in southwestern Japan. I. Wind damaged trees and canopy gaps in an evergreen oak forest. Bot. Mag. Tokyo 95:385-399.
    Naka, K. and K. Yoda. 1984. Community dynamics of evergreen broadleaf forests in southwestern Japan. II. Species composition and density of seeds buried in the soil of a climax evergreen oak forest. Bot. Mag. Tokyo 97:61-79.
    Naka, K. and T. Yoneda. 1984. Community dynamics of evergreen broadleaf forests in southwestern Japan III. Revegetation in gaps in an evergreen oak forest. Bot. Mag. Tokyo 97:275-286.
    Olmsted, N. W. and J. D. Curtis. 1947. Seeds of the forest floor. Ecology 28:49-52.
    Oosting, H. J. and M. E. Humphreys. 1940. Buried viable seeds in a successional series of old field and forest soils. Bulletin of the Torrey Botanical Club 67:253-273.
    Pakeman, R. J. and J. L. Small. 2005. The role of the seed bank, seed rain and the timing of disturbance in gap regeneration. Journal of Vegetation Science 16:121-130.
    Platt, W. J. and D. R. Strong. 1989. Special feature: Gaps in forest ecology. Ecology 70:535.
    Poulson, T. L. and W. J. Platt. 1989. Gap light regimes Influence canopy tree diversity. Ecology 70:553-555.
    Putz, F. E. and S. Appanah. 1987. Buried seeds, newly dispersed seeds, and the dynamics of a lowland forest in Malaysia. Biotropica 19:326-333.
    Rotundo, J. L. and M. R. Aguiar. 2005. Litter effects on plant regeneration in arid lands: A complex balance between seed retention seed longevity and soil-seed contact. Journal of Ecology 93:829-838.
    Rydgren, K. and G. Hestmark. 1997. The soil propagule bank in a boreal old-growth spruce forest: changes with depth and relationship to aboveground vegetation. Canadian Journal of Botany 75:121-128.
    Schenkeveld, A. J. and H. J. Verkaar. 1984. The ecology of short-lived forbs in chalk grasslands: Distribution of germinative seeds and its significance for seedling emergence. Journal of Biogeography 11:251-260.
    Sezen, U. U., R. L. Chazdon, and K. E. Holsinger. 2005. Genetic consequences of tropical second-growth forest regeneration. science 307:891.
    Shannon, C. E. 1948. A mathematical theory of communication. The Bell System Technical Journal 27:379-423, 623-656.
    Shannon, C. E. and W. Weaver. 1949. The mathematical theory of communication. University of Illinois Press, Urbana.
    Simpson, E. H. 1949. Measurement of diversity. Nature 163.
    Spies, T. A. and J. F. Franklin. 1989. Gap characteristics and vegetation response in coniferous forests of the pacific northwest. Ecology 70:543-545.
    Su, H.-J. 1984b. Studies on the climate and vegetation types of the natural forest in Taiwan II. Altitudinal vegetation zones in relation to temperature gradient. Quart. J. Chin. For. 17:57-73.
    Swaine, M. D. and T. C. Whitmore. 1988. On the definition of ecological species groups in tropical rain forests. Vegetatio 75:81-86.
    Thompson, K., S. R. Band, and J. G. Hodgson. 1993. Seed size and shape predict persistence in soil. Functional Ecology 7:236-241.
    Thompson, K. and J. P. Grime. 1979. Seasonal variation in the seed banks of herbaceous species in ten contrasting habitats. Journal of Ecology 67:893-921.
    Veblen, T. T. 1989. Tree regeneration responses to gaps along a transandean gradient. Ecology 70:541-543.
    Verkaar, H. J. and A. J. Schenkeveld. 1984a. On the ecology of short-lived forbs in chalk grasslands: life-history characteristics. New Phytologist 98:659-672.
    Verkaar, H. J. and A. J. Schenkeveld. 1984b. On the ecology of short-lived forbs in chalk grasslands: semelparity and seed output of some species in relation to various levels of nutrient supply. New Phytologist 98:673-682.
    Wang, B. C. and T. B. Smith. 2002. Closing the seed dispersal loop. TRENDS in Ecology & Evolution 17:379-385.
    Whitmore, T. C. 1989. Canopy gaps and the two major groups of forest trees. Ecology 70:536-538.
    Williamson, G. B. 1975. Pattern and seral composition in an old-growth beech-maple forest. Ecology 56:727-731.
    Yang, K.-C., J.-K. Lin, C.-F. Hsieh, C.-L. Huang, Y.-M. Chang, L.-H. Kuan, J.-F. Su, and S.-T. Chiu. 2008. Vegetation pattern and woody species composition of a broad-leaved forest at the upstream basin of Nantzuhsienhsi in mid-southern Taiwan. Taiwania 53:325-337.
    王世彬、林讚標和簡慶德。1995。林木種子儲藏性質的分類。林業試驗所研究報告季刊 10: 225-276。
    何春蓀。2003。臺灣地質概論。經濟部中央地質調查所,台北縣。
    周文郅。1999。關刀溪森林生態系孔隙更新之研究。國立中興大學,台中。
    林文智、郭耀綸、陳永修、張乃航、洪富文和馬復京。2004。台灣南部多納針闊葉林土壤種子庫與森林更新。台灣林業科學 19:33-42。
    林勝國。2003。關刀溪森林生態系干擾地植群更新之研究。國立中興大學,台中。
    林讚標。1996。林木種子採集、處理、儲藏、休眠與萌發。台灣省林業試驗所,台北。
    翁其羽、謝長富和蘇夢淮。2011。台灣亞熱帶山地雨林之小苗短期動態。2011年第五屆環境論文研討會,台中。
    張乃航、馬復京、游漢明和許原瑞。1998。福山地區次生闊葉林土壤種子庫及幼苗動態。台灣林業科學 13:279-289。
    張和明。1996。台灣北部福山地區天然闊葉林土壤種子庫與樹種更新之研究。國立台灣大學,台北。
    陳明義、陳志煌和林勝國。2003。關刀溪森林生態系地震崩塌地土壤種子庫及小苗組成之研究。林業研究季刊 25:97-108。
    湯冠臻、曾彥學、曾喜育和呂金誠。2011。臺中大坑地區次生林土壤種子庫組成之研究。林業研究季刊 33:35-48。
    劉棠瑞和蘇鴻傑。1983。森林植物生態學。臺灣商務印書館股份有限公司,台北。
    簡慶德和楊佳如。1997。長葉木薑子種子成熟度影響種子的儲藏能力。台灣林業科學 12:369-372。

    下載圖示
    QR CODE