簡易檢索 / 詳目顯示

研究生: 鄒欣庭
Hsin-Ting Chou
論文名稱: 樹枝狀金觸媒在燃料電池的應用
The Electrocatalytic Study of Gold Dendrites for Fuel Cell Applications
指導教授: 洪偉修
Hung, Wei-Hsiu
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 83
中文關鍵詞: 樹狀金電極甲醇電氧化乙醇電氧化甲酸電氧化氧氣還原樹狀銀電極
英文關鍵詞: gold dendrites, methanol electro-oxidation, ethanol electro-oxidation, formic acid electro-oxidation, oxygen reduction, silver dendrites
論文種類: 學術論文
相關次數: 點閱:101下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 除了商用多晶金電極,我們以脈衝式電鍍沉積法,在玻璃碳電極的表面上沉積出具有很好的結晶性,並呈現三軸對稱的樹狀金電極。而我們利用不同的沉積時間製備出不同條件的金電極,如: GD3000s、GD1500s及NP500s。
      首先,將製備出不同條件的金電極與商用多晶金電極在0.5 M KOH中進行L-cysteine還原脫附與在0.5 M H2SO4中進行金表面單層氧化物還原脫附的反應,用公式:Q_a/Q_b 來討論Au(111)面在四個不同條件的金電極上分別占的比例對電催化的影響。接著,將不同條件的電極進行甲醇、乙醇、甲酸以及氧氣的催化反應。相較於其他條件的金電極,GD3000s對於甲醇、乙醇及甲酸的電催化效果皆有較好表現。相反的,因顆粒大小的因素,導致GD3000s對於氧氣的電催化效果較其他條件的電極差。
      最後,我們以相同的方式在玻璃碳電極上製備出具有良好結晶性的樹狀銀電極。以便於日後研究樹狀金、銀電及之間的活性差異。

    關鍵字:樹狀金電極、甲醇電氧化、乙醇電氧化、甲酸電氧化、氧氣還原、樹狀銀電極

    Apart from the commercial polycrystalline gold electrode, we used pulsed current electrolysis to deposit gold dendrite showing well crystalline and three-order symmetry on the surface of the glassy carbon electrode (GC). And we used different deposition durations to prepare the gold electrodes (GD3000s, GD1500s, and NP500s).
    First, we carried out the reductive desorption of L-cysteine on gold electrodes prepared by different deposition times and commercial polycrystalline gold electrode in 0.5M KOH and desorbed the monolayer oxide on gold surface in 0.5M H2SO4. Following, we used the ratio: Q_a/Q_b to evaluate the effect of an Au(111) facet on the four different gold electrodes in electrocatalysis. We then performed the electrocatalysis reaction with methanol, ethanol, formic acid, and oxygen. Of all the electrodes tested, GD3000s showed the best performance in the electrocatalysis reaction with methanol, ethanol, and formic acid. However, due to its larger particle size, GD3000s exhibited poor electrocatalytic activity of oxygen reduction reaction.
    Finally, we prepared the silver dendrite on glassy carbon with good crystalline structure by the same means, in order to study the difference between gold dendrite and silver dendrite.

    Keyword: gold dendrites、methanol electro-oxidation、ethanol electro-oxidation、formic acid electro-oxidation、oxygen reduction、silver dendrites.

    目錄(CONTENTS) iv 第一章 緒論 1 1.1 前言 1 1.2 直接醇類燃料電池 4 1.2.1 直接甲醇燃料電池(Direct Methanol Fuel Cell,DMFC) 4 1.2.2 直接乙醇燃料電池(Direct Ethanol Fuel Cell,DEFC) 7 1.2.3 直接甲、乙醇燃料電池(DMFC、DEFC)之陽極觸媒 9 1.2.4 三維樹狀金電極(3-D Gold Dendrite) 16 1.3 直接甲酸燃料電池(Direct Formic Acid Fuel Cell,DFAFC) 20 1.4 氧氣與過氧化氫還原反應 (Reduction of Oxygen and Hydrogen Peroxide) 24 第二章 實驗與儀器原理 28 2.1 實驗藥品 28 2.2 實驗流程 29 2.3 實驗製備 30 2.3.1樹狀金電極的製備 30 2.3.2 循環伏安 31 2.3.3 循環伏安之甲醇、乙醇以及甲酸氧化 31 2.3.4 循環伏安之氧氣、過氧化氫還原反應 32 2.3.5 樹狀銀電極的製備 33 2.4 材料分析與鑑定 34 2.4.1粉末X光繞射儀(powder X-ray diffraction,XRD) 34 2.4.2 掃描式電子顯微鏡(Scanning Electron microscope,SEM) 37 2.4.3 穿透式電子顯微鏡(Transmission Electron Microscope,TEM) 39 2.4.4 循環伏安法(Cyclic Voltammetry,CV) 39 第三章 結果與討論 43 3.1 樹枝狀金電極之SEM分析 43 3.2 樹枝狀金電極之XRD分析 45 3.3 樹狀金電極的電化學表面積(Electrochemical Surface Area of Gold Dendrite,ESA) 47 3.4 樹狀金電極在酸性和鹼性介質中的循環伏安特性 49 3.5 金電極在鹼性條件下對甲醇的催化活性表現 52 3.6金電極在鹼性條件下對乙醇的催化活性表現 57 3.7 金電極在酸性條件下對甲酸的催化活性表現 61 3.8金電極在PBS(PH=7.4)溶液中對氧氣的催化活性表現 65 3.9 三維樹狀銀電極(3-D Silver Dendrites) 69 3.9.1 銀電極之SEM與EDX分析 71 3.9.2 銀電極之XPS與XRD分析 73 第四章 結論 77 第五章 參考文獻 79

    1. http://en.wikipedia.org/wiki/Fuel_cell.
    2. K. A. F. L.Carrette, U.Stimming, Fuel Cells, 2001, 1, 5-39.
    3. V. B. Antonino Salvatore Aricò, and Vincenzo Antonucci, Electrocatalysis of Direct Methanol Fuel Cells, 2009, 1-78.
    4. M. P. H. a. T. R. Ralph, Platinum Metals Rev., 2002, 46, 146-164.
    5. S. Zhang, Y. Shao, G. Yin and Y. Lin, Journal of Materials Chemistry A, 2013, 1, 4631.
    6. J. D. H. Dohle , J. Mergel, H.F. Oetjen, C. Zingler, D. Stolten, Journal of Power Sources, 2002, 105, 274-282.
    7. A. L. Claude Lamy, Veronique LeRhun, Fabien Delime, Christophe Coutanceau, Jean-Michel Leger, Journal of Power Sources, 2002, 105, 283-296.
    8. R. Dillon, S. Srinivasan, A. S. Aricò and V. Antonucci, Journal of Power Sources, 2004, 127, 112-126.
    9. E. Antolini and E. R. Gonzalez, Journal of Power Sources, 2010, 195, 3431-3450.
    10. J. Jiang and T. Aulich, Journal of Power Sources, 2012, 209, 189-194.
    11. M. J. a. A. W. Matthew Neurock, Faraday Discussions, 2008, 140, 363-378.
    12. A. M. Baena-Moncada, G. A. Planes, M. S. Moreno and C. A. Barbero, Journal of Power Sources, 2013, 221, 42-48.
    13. G. A. D. Eve S. Steigerwalt, David E. Cliffel, and C. M. Lukehart,, Journal of Physical Chemistry B, 2001, 105, 8097-8101.
    14. N. M. Hubert A. Gasteiger, Philip N. Ross, Jr., and Elton J. Cairns, Journal of Physical Chemistry 1993, 97, 12020-12029.
    15. Y. Lou, M. M. Maye, L. Han, J. Luo and C.-J. Zhong, Chemical Communications, 2001, DOI: 10.1039/b008669j, 473-474.
    16. I.S. Park, K.-S. Lee, D.-S. Jung, H.-Y. Park and Y.-E. Sung, Electrochimica Acta, 2007, 52, 5599-5605.
    17. M. Soszko, M. Łukaszewski, Z. Mianowska and A. Czerwiński, Journal of Power Sources, 2011, 196, 3513-3522.
    18. W. V. T. Frelink, J.A.R. van Veen, Surface Science, 1995, 335, 353-360.
    19. H. Liu, C. Song, L. Zhang, J. Zhang, H. Wang and D. P. Wilkinson, Journal of Power Sources, 2006, 155, 95-110.
    20. H. H. T. Iwasita, A. John-Anacker, W. F. Lin, and W. Vielstich, Langmuir : the ACS journal of surfaces and colloids, 2000, 16, 522-529.
    21. N. M. M. Hubert A. Gasteiger, and Philip N. Ross, Jr., Journal of Physical Chemistry 1995, 99, 8290-8301.
    22. A. Hamnett, Catalysis Today, 1997, 38, 445-457.
    23. S. Jones, K. Tedsree, M. Sawangphruk, J. S. Foord, J. Fisher, D. Thompsett and S. C. E. Tsang, ChemCatChem, 2010, 2, 1089-1095.
    24. K. A. Assiongbon and D. Roy, Surface Science, 2005, 594, 99-119.
    25. M. Valden, Science, 1998, 281, 1647-1650.
    26. M. Haruta, Nature, 2005, 437, 1098.
    27. M. Haruta, Chemical Reviews, 2003, 3, 75-87.
    28. H. S. Hironori Tsunoyama, Yuichi Negishi, and Tatsuya Tsukuda, Journal of the American Chemical Society, 2005, 127, 9374-9375.
    29. O. N. Rizia Bardhan, Nikolay Mirin, Hui Wang, and Naomi J. Halas, ACS Nano, 2009, 3, 266-272.
    30. C.-H. C. Hsin-Lun Wu, and Michael H. Huang, Chemistry of Materials, 2009, 21, 110-114.
    31. H.J. K. Tai Hwan Ha, and Bong Hyun Chung, Journal of physical Chemistry C, 2007, 111, 1123-1130.
    32. J. Y. L. Jianping Xie, and Daniel I.C. Wang, Journal of physical Chemistry C, 2007, 111, 10226-10232.
    33. H.-L. W. Chia-Chien Chang, Chun-Hong Kuo, and Michael H. Huang, Chemistry of Materials, 2008, 20, 7570-7574.
    34. J. S.G. n. Javier Herna´ndez, Enrique Herrero, Antonio Aldaz, and Juan M. Feliu, Journal of physical Chemistry B, 2005, 109, 12651-12654.
    35. J. D. S. Tae S. Kim, Christopher T. Reeves, Randall J. Meyer, and C. Buddie Mullins, Journal of the American Chemical Society, 2003, 125, 2018-2019.
    36. J. Zhang, P. Liu, H. Ma and Y. Ding, Journal of Physical Chemistry C, 2007, 111, 10382-10388.
    37. A. M. Fernando Silva, Electrochimica Acta, 1998, 44, 919-929.
    38. A. C. a. J. Lipkowski, Journal of physical Chemistry B, 1999, 103, 682-691.
    39. R. R. A. i. S. Strbac, Journal of Electroanalytical Chemistry, 1995, 403, 169-181.
    40. Z. Borkowska, A. Tymosiak-Zielinska and G. Shul, Electrochimica Acta, 2004, 49, 1209-1220.
    41. Z. Borkowska, A. Tymosiak-Zielinska and R. Nowakowski, Electrochimica Acta, 2004, 49, 2613-2621.
    42. E. R. G. G.Tremiliosi-Filho, A.J.Motheo,E.M.Belgsir,J.-M.Le´ger, Journal of Electroanalytical Chemistry, 1998, 444, 31-39.
    43. 林苔瑄, 國立臺灣師範大學化學系博士論文, 2009.
    44. N. M. Aslam, M. S. Masdar, S. K. Kamarudin and W. R. W. Daud, APCBEE Procedia, 2012, 3, 33-39.
    45. S. H. C. Rice, R.I. Masel, P. Waszczuk, A. Wieckowski, Tom Barnard, Journal of Power Sources, 2002, 111, 83-89.
    46. Y.W. Rhee, S. Y. Ha and R. I. Masel, Journal of Power Sources, 2003, 117, 35-38.
    47. S. Ha, Z. Dunbar and R. I. Masel, Journal of Power Sources, 2006, 158, 129-136.
    48. A. M. Bartrom and J. L. Haan, Journal of Power Sources, 2012, 214, 68-74.
    49. S. Brimaud, J. Solla-Gullón, I. Weber, J. M. Feliu and R. J. Behm, ChemElectroChem, 2014, DOI: 10.1002/celc.201400011, 1 – 10.
    50. E. Broaddus, A. Wedell and S. A. Gold, International Journal of Electrochemistry, 2013, 2013, 1-7.
    51. H.W. L. Hideaki Kita Journal of Electroanalytical Chemistry, 1995, 388, 167-177.
    52. S. G. a. L. D. Burke, International Journal of Electrochemical Science, 2010, 5, 828 - 851.
    53. C. H. Chen, W. J. Liou, H. M. Lin, S. H. Wu, A. Borodzinski, L. Stobinski and P. Kedzierzawski, Fuel Cells, 2010, 10, 227-233.
    54. Y. Zhu, Z. Khan and R. I. Masel, Journal of Power Sources, 2005, 139, 15-20.
    55. J.H. Choi, K.-J. Jeong, Y. Dong, J. Han, T.-H. Lim, J.-S. Lee and Y.-E. Sung, Journal of Power Sources, 2006, 163, 71-75.
    56. S. Ha, B. Adams and R. I. Masel, Journal of Power Sources, 2004, 128, 119-124.
    57. I. M. Al-Akraa, A. M. Mohammad, M. S. El-Deab and B. E. El-Anadouli, Chemistry Letters, 2011, 40, 1374-1375.
    58. Y.C. Bai, W.-D. Zhang, C.-H. Chen and J.-Q. Zhang, Journal of Alloys and Compounds, 2011, 509, 1029-1034.
    59. K.-S. L. In-Su Park, Jong-Ho Choi, Hee-Young Park, and Yung-Eun Sung, Journal of physical Chemistry C, 2007, 111, 19126-19133.
    60. C. A. R. Su Ha, Richard I. Masel, Andrzej Wieckowski, Journal of Power Sources, 2002, 112, 655-659.
    61. R. P. a. R. M. R. J.O. Besenhard, Journal of Electroanalytical Chemistry, 1979, 96, 57-72.
    62. B.-L. W. Juan Xiang, Sheng-Li Chen, Journal of Electroanalytical Chemistry, 2001, 517, 95-100.
    63. B.l. W. Sheng-li Chert , Chuan-sin Cha, Journal of Electroanalytical Chemistry, 1997, 431, 243-247.
    64. A. Prieto, J. Hernandez, E. Herrero and J. M. Feliu, Journal of Solid State Electrochemistry, 2003, 7, 599-606.
    65. B. K. J. a. C. R. Raj, Langmuir : the ACS journal of surfaces and colloids, 2007, 23, 4064-4070.
    66. R. R. A. i. S. Strbac, Journal of Electroanalytical Chemistry, 1996, 403, 169-t181.
    67. T. O. Mohamed S. El- Deab Electrochemistry Communications, 2002, 4, 288-292.
    68. A. Sarapuu, M. Nurmik, H. Mändar, A. Rosental, T. Laaksonen, K. Kontturi, D. J. Schiffrin and K. Tammeveski, Journal of Electroanalytical Chemistry, 2008, 612, 78-86.
    69. S. S. a. R. R. Adzic, Electrochimica Acta, 1996, 41, 2903-2908.
    70. M. S. El-Deab, T. Okajima and T. Ohsaka, Journal of The Electrochemical Society, 2003, 150, A851.
    71. 林麗娟, 工業材料86期, 1994.
    72. 汪建民, 中國材料科學學會, 1998.
    73. D. A. W. Skoog, D. M.; Holler, F. J.; Crouch, S. R., Thomson, 2004.
    74. H. F. M. W. Wong-Ng, C. R. Hubbard, and A. D. Mighell, Journal of Research of the National Institute of Standards and Technology, 2001, 106, 1013–1028.
    75. S. T. a. A. PETRII, J. Electroanal. Chem., 1992, 327, 353-376.
    76. H. A.-K. a. B. E. Conway, Journal of Electroanalytical Chemistry, 1987, 228, 429-453.
    77. R. F. Carvalhal, R. Sanches Freire and L. T. Kubota, Electroanalysis, 2005, 17, 1251-1259.
    78. R. N. V. Dominik Kramer, and Jo1rg Weissmu1ller, Nano Letters, 2004, 4, 793-796.
    79. F. Yong, H. Ma, X. Wang, X. Feng, S. Huang, J. Jiang and S. Chen, Electrochimica Acta, 2006, 51, 3743-3751.
    80. S.C. C. Yeunghaw Ho, Xiaoping Gao, and Michael J. Weaver, Langmuir : the ACS journal of surfaces and colloids, 1992, 8, 975-981.
    81. F. Gao, M. S. El-Deab, T. Okajima and T. Ohsaka, Journal of The Electrochemical Society, 2005, 152, A1226.
    82. M. Aizawa, A. M. Cooper, M. Malac and J. M. Buriak, Nano Letters, 2005, 5, 815-819.
    83. K. A. D. Dick, K.; Larsson, M. W.; Martensson, T.; Seifert, W.; Wallenberg, L. R.; Samuelson, L., Nature Materials, 2004, 3, 380.
    84. X. G. M. Peng, L.; Yang, W.; Wickham, J.; Scher, E.; Kadavanich, A., Nature 2000, 404, 59.
    85. M. W. Benzhi Liu, International Journal of Electrochemical Science, 2013, 8 8572 - 8578.
    86. D. R. Rolison, Science, 2003, 299, 1698.

    下載圖示
    QR CODE