簡易檢索 / 詳目顯示

研究生: 林素微
Su-wei Lin
論文名稱: 國小高年級學童數感特徵暨數感動態評量發展之探討
The development and validity of the computerized dynamic number sense assessment system
指導教授: 林世華
Lin, Sieh-Hwa
洪碧霞
Hung, Pi-Hsia
學位類別: 博士
Doctor
系所名稱: 教育心理與輔導學系
Department of Educational Psychology and Counseling
論文出版年: 2003
畢業學年度: 91
語文別: 中文
論文頁數: 190
中文關鍵詞: 數感動態評量
論文種類: 學術論文
相關次數: 點閱:202下載:49
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究的主要目的在發展電腦化數感動態評量系統以探討目前國小高年級學童的數感特徵,希望可以了解目前高年級學童的數感表現概況並且提供數感教學與測量的參考。本研究將數感定義為情境中數的覺知與推理,在真實化克漏字式的數學問題情境中,學生對多個未知數量合理值的選擇和判準的能力。研究內容包含電腦化數感評量工具的研發及其初步應用信效度議題的探討。對於本研究的558位高年級常模樣本而言,數感評量的測驗難度適中偏易,平均答對比率為.69,題目的難度來源包含考生對於題目情境的熟悉程度、考生所需同時處理的未知數,以及未知數所涉及潛在的變項數及變項間的關聯等因素的影響。研究中將數感評量問題區分為三個難度層次,以答對率70%為精熟水準之決定依據,在本研究高年級學童中,有14.5%的學童無法通過最低難度層次,其基本的數感相當薄弱。而有32%左右的學童屬於數感表現水準1,這類學童對於日常生活中習見、而且未知數量資訊不太複雜的情境數學合理性推估的表現不錯,但對於較不習見且數運作較複雜的情境掌握度則仍待加強。而36%左右的學童屬於表現水準2,僅有17%的學童具有全面靈敏的數量合理性推估表現。而數感表現較高的學生,平均作答思考時間較長,數感愈好的學生,對於題目難度也有較佳的後設覺察,他們普遍較能隨題目的難度而調整自己的作答時間。就常模而言,數感表現和數學能力測驗、數量估算評量的相關在.47左右,呈現中度的正相關。具體而言,本研究所研發的電腦化數感評量,題目情境真實而題型新穎,內容結構明晰、難度大致適切,利於後續的擴充發展。
    根據常模在數感評量的測驗結果,研究進一步編輯適性的電腦化數感動態評量系統,動態評量系統主要分成第一階段數感表現水準區辨、第二階段介入、以及第三階段後測三部分。研究中另擇取147位五年級學童進行動態評量系統效益探討。結果顯示,動態提示系統運作適性而有效,整個動態評量系統對於學生具有協助與區辨的效益。其後測與數學能力測驗、數量估算等學習表現變項的相關明顯皆高於常模在靜態測驗的結果,顯示動態評量系統對於學習表現的預測力比靜態測驗高。以前、後測、進步幅度、以及前測加進步幅度等不同評量依據進行歸類,結果顯示,納入中介後,數感與數學能力的關連明顯提昇,即後測歸類的組別變項對於數學能力解釋力最強,顯示動態介入後所測量的表現水準和數學整體學習表現具有較強的關聯。整體而言,對於數感這類教育文化中學生尚未具有充分、公平學習經驗的變項,動態評量是較佳的評量取向,得以更有效探討該變項的構念、預測效益與重要性。本研究以電腦化克漏字式的數學問題情境為數感的構念做了操作性的界定,初步信效度結果顯示,該界定所評定的學生有關數量合理值的覺知與推理能力與在校數學成績及標準化的一般數學能力有中度的相關,而動態評量取向也靈敏的提昇了該構念的效標關連效度。

    The purpose of this study was to develop a computerized dynamic number sense assessment system (CDNSA) to investigate the issues of elementary students’ number sense. Number sense is the ability of awareness and reasoning for the relationships between the numbers, which were embedded in the context or situation. The students’ number sense can be enriched by meaningful experiences and the performance is situated in specific content or context. Based upon the operational definition, this research developed the closed item type about actual mathematical problem contexts to investigate the students’ number sense. The major tasks included were (1) building up a static computerized number sense assessment (CNSA); (2) developing the adaptive computerized dynamic number sense assessment system (CDNSA) by which to promote the students’ number sense.
    Around 558 fifth and sixth grade students were stratified sample as norm group for CNSA. Three difficulty levels were developed to assess the students’ number sense. The study estimated that there were around 14.5% students who were unable to demonstrate the basic number sense and there around 17% students could perform number sense sensitively. The results showed that the three difficulty levels of CNSA could discriminate different ability levels groups successfully. It suggested that there were discriminative power in CNSA for distinguishing different number sense degrees. The correlation coefficients between CNSA and the Computerized Adaptive Mathematic Ability Test (CAMAT) and the Computerized Estimation Test (CET) were around .47s for the norm group.
    Another 147 fifth students were stratified as the intervention study’s sample. The results suggested that hint system of CDNSA could promote the students’ number sense efficiently and adaptively and the CDNSA could promote and discriminant the students’ number sense successfully. The correlation coefficients between the intervention study’s post test of CDNSA and CAMAT and CET were higher than the coefficients between CNSA and the two tests of norm sample. Number sense was a new and important focus in our mathematics education. For this new strand, the students not yet had sufficient learning experience; it could be unfair to assess the students’ number sense by traditional assessment format. In order to having a deep and better understanding the relationship of number sense and general mathematic ability, the dynamic assessment was a workable and productive assessment approach.

    中文摘要 英文摘要 第一章 緒論……………………………………………………………1 第二章 文獻探討 第一節 數感的重要性、成分以及相關議題…………………………9 第二節 動態評量…………………………………………………….40 第三章 研究設計與方法 第一節 研究設計…………………………………………………….66 第二節 研究樣本…………………………………………………….69 第三節 研究工具…………………………………………………….71 第四節 名詞解釋…………………………………………………….80 第五節 資料處理與分析…………………………………………….82 第四章 研究結果 第一節 電腦化數感評量的發展與學童數感特徵探討…………….83 第二節 電腦化數感動態評量的效益……………………………..110 第五章 結論與建議 第一節 結論………………………………………………………..135 第二節 限制與建議………………………………………………..138 參考文獻 中文部分……………………………………………………………….140 英文部分……………………………………………………………….143 附錄 附錄一 電腦化數感評量(設計原稿)...………………………….161 附錄二 電腦化數感評量傳統項目逐題參數………………………165 附錄三 電腦化數感動態評量(設計原稿)...…………………….166 附錄四 電腦化數感動態評量提示系統(設計原稿)………………182 附錄五 電腦化數感動態評量施測說明……………………………184

    王麗娟(民89)譯:數字感:1、2、3哪裡來。(譯自:Dehaene, S.(1997).The Number Sense: How the Mind Creates Mathematics. Oxford University Press.)。台北:先覺出版社。
    江文慈(民82):槓桿認知能力發展的評量與學習遷移歷程的分析─動態評量之應用。國立臺灣師範大學教育心理與輔導研究所碩士論文。
    江秋坪(民84):動態評量對國語資源班學童鑑別與協助效益之探討。國立臺南師範學院初等教育研究所碩士論文。
    江秋坪,洪碧霞,邱上貞(民85):動態評量對國語資源班學童鑑別與協助效益之探討。測驗年刊,43輯。
    吳幸宜譯(民83):學習理論與教學應用。台北:心理出版社。
    吳昭容(民85):先前知識對國小學童小數概念學習之影響。國立臺灣大學心裡學研究所博士論文。
    吳國銘(民83):國小學童在動態評量中數學解題學習歷程與遷移效益之探討。國立臺南師範學院初等教育研究所碩士論文。
    吳國銘,洪碧霞,邱上貞(民84):國小學童在動態評量中數學解題學習歷程與遷移效益之探討。測驗年刊。42輯,頁 61-84。
    吳鐵雄、江秋坪、洪碧霞(民83):國小數學科教學評量認知導向之理論與實際。八十二學年度師範學院教育論文發表會。臺南師範學院。
    沈中偉(民83):魏考斯基理論在認知策略上的應用。教學科技與媒體(2),頁23-31。
    周天賜(民87):動態評量:發展與改進兒童學習潛能的媒介式學習。台北:心理出版社。
    林世華、劉子鍵(民86):整合認知心理學、心理計量學與教學的理想模式:結合認知設計統、反應產生模式、認知診斷評量系統以及動態評量系統。教育測驗新近發展趨勢學術研討會論文彙編,頁229-235。國立台南師範學院測驗發展中心。
    林秀娟(民82):動態評量結合試題反應理論在空間視覺學習潛能評量之研究。國立台灣師範大學教育心理與輔導研究所碩士論文。
    林素微(民85):國小六年級學童數學解題彈性思考動態測量之研究。國立台南師範學院國民教育研究所碩士論文。
    林素微,洪碧霞(民86):國小六年級學童數學解題彈性思考動態測量之研究。教育測驗新近發展趨勢學術研討會。臺南師範學院。
    林素微、洪碧霞、王偉仲、鄭文隆、林世華(民91):電腦化數感動態評量發展初探。論文發表於『2002年會暨社會心理與教育測驗學術研討會』。中國測驗學會。
    林敏慧(民81):國小輕度障礙兒童學習潛能評量之研究。國立台灣師範大學特殊教育研究所碩士論文。
    林福來(民90):數感的定義。節錄於90.12.17「書報討論」之課堂討論。
    洪碧霞(民91):國小數學學習不利學童學習成長與工作記憶特徵之探討。國科會專題研究計畫成果報告。NSC90-2521-S-024-002
    洪碧霞,吳裕益,張秋芳,林素微,葉千綺(民 85 ):國民小學數學標準參照測驗編製計畫結案報告。臺南師範學院。
    徐芳立(民87):提示系統對增進國中一年級學生自問自答策略與策略與閱讀理解能力之成效分析。國立高雄師範大學特殊教育學系碩士論文。
    莊麗娟(民85)國小六年級浮力概念動態評量的效益分析。國立高雄師範大學教育學系碩士論文。
    莊麗娟(民89):系統化多元評量模式之發展研究。國立高雄師範大學教育學系博士論文。
    許家吉(民83):電腦化動態圖形歸類測驗發展之研究。國立台南師範學院初等教育研究所碩士論文。
    許家吉,洪碧霞,吳鐵雄(民 84 ):電腦化動態圖形歸類測驗發展之研究 。測驗年刊。42輯,頁 29-59。
    許清陽(民90):國小高年級學童數字常識發展之研究。國立嘉義大學國民教育研究所碩士論文。
    陳進福(民86):國小輕度智障學童數學解題動態評之研究。國立嘉義師範學院國民教育研究所碩士論文。
    陳嘉成(民90):以動態評量AIMS模式探究國小學童光和作用概念的改變。國立台北師範學院數理教育研究所碩士論文。
    黃靖淑(民91):國小中高年級學生數字感發展概況之探討。國立台南師範學院國民教育研究所碩士論文。
    楊德清(民86):數學教育中目前大眾所關切之一個主題—數字常識,科學教育月刊,200,頁12-18。
    楊德清(民89):數字常識與筆算能力,教師之友,41(2),30-35。
    葉千綺(民87):測驗電腦化的理論與實際。國小教學評量的反省與前瞻。台南師範學院測驗發展中心。頁199-224。
    歐瑞賢(民86):國小學生比例推理能力動態評量之效益分析。國立台南師範學院國民教育研究所碩士論文。
    簡月梅(民87):互動式提示多點計分電腦化適性測驗。國立台灣師範大學資訊教育研究所碩士論文。
    Asholck, R. B.(1982). Error patterns in computation: A semi-programmed approach. Columbus, OH: Merrill.
    Baroody, A. J.(1989). Kindergartners’ mental addition with single-digit combinations. Journal for Research in Mathematics Education, 20(2), 159-172.
    Bay, J. M., Reys, R. E., Simms, K.; Taylor, P. M.(2000). Bingo Games: Turning Student Intuitions into Investigations in Probability and Number Sense. Mathematics Teacher, 93(3), 200-206
    Bednar, M. R., & Kletzien, S. B. (1990, November). Dynamic assessment for reading: A validation. Paper presented at the National Reading Conference, Miami, FL.
    Bednarz, N. & Janvier, B.(1982). The understanding of numeration in primary school. Educational Studies in Mathematics, 13, 33-57.
    Bednarz, N. & Janvier, B.(1988). A constructivist approach to numeration in primary school: Results of a three year intervention with the same group of children. Educational Studies in Mathematics, 19, 299-331.
    Behr, M. J.(1989).Reflections on the conference . In J. T. Sowder & B. P. Schappelle(Eds.). Establishing foundations for researh on number sense and related topics: Report of conference(pp.85-88). San Diego: San Diego State University Center for Research in Mathematics and Science Education.
    Behr, M. J., Lesh, R., Post, T. R., & Silver, E. A.(1983). Rational –number concepts. In R. Lesh & M. Landau (Eds.), Acquistion of mathematics concepts and processes (pp.91-126). New York:Academic.
    Behr, M. J., Wachsmuth, I., Post, T. R., & Lesh, R.(1984). Order and equivalence of rational numbers: A clinical teaching experiment. Journal for Research in Mathematics Education, 15, 323-341.
    Booker, George, Ed.; Cobb, Paul, Ed.; de Mendicuti, Teresa N..(1990). Proceedings of the Annual Conference of the International Group for the Psychology of Mathematics Education with the North American Chapter 12th PME-NA Conference (14th, Mexico, July 15-20, 1990), Vo. 3.
    Bright, G.W. (1976). Estimation as part of learning to measure, in: D. NELSON (Ed.). NCTM Yearbook 1976: measurement in school mathematics, (pp. 87-104). Virginia: NCTM.
    Brown, A.L. & Ferrara, R.A. (1985). Diagnosing zones of proximal development, in: J.V. Wertsch, (Ed.). Culture, Communication and Cognition: Vygotskyan perspectives (pp. 273-305).Cambridge:Cambridge University Press.
    Brown, J. S., & Burton, R. R.(1978). Diagonostic models for procedural bugs in basic mathematical skills. Cognitive Science, 2, 155-192.
    Brown, M.(1981).Place value and dicimals. In K. M. Hart(Ed.)., Children’s understanding of mathematics:11-16 (pp.48-65). London: John Murray.
    Brown, N.R. & Siegler, R.S. (1993). Metrics and mappings: a framework for understanding real-world quantitative estimation, Psychological Review, 100, pp. 511-534. Carpenter, T.P., Coburn, T.G., Revs, R.E. & Wilson, J.W. (1976). Notes from national assessment: estimation, Arithmetic Teacher, 23, pp. 296-302.
    Bruer, J. T. (1997).Education and brain: A bridge too far. Educational Researcher, 26(8),4-16.
    Bunderson, C. V., Inouye, D. K. & Oslen, J. B.(1989). The Four Generation of Computerized Educational Measurement. In R. L. Linn(Eds). Educational Measurement(3rd.).(pp.367-407). NK :Macmillan Publishing Company.
    Carlson, J. & Wiedl, K.H. (2000). The validity of dynamic assessment. In Lidz, C. & Elliott, J. (eds.). Dynamic assessment: Prevailing models and application (pp.681-712). New York: ElSEVIER SCIENCE Inc.
    Carpenter, T. P.(1989).Number sense and other nonsense. In J. T. Sowder & B. P. Schappelle(Eds.). Establishing foundations for researh on number sense and related topics: Report of conference(pp.89-91). San Diego: San Diego State University Center for Research in Mathematics and Science Education.
    Carpenter, T. P.(1998). A longitudinal study of invention and understanding in children's multidigit addition and subtraction. Journal for Research in Mathematics Education, 29(1), 3-20.
    Carpenter, T. P., & Moser, J. M.(1984). The acquisition of addition and subtraction concepts in grade one through three. Journal for Research in Mathematics Education, 15(3), 179-202.
    Carpenter, T. P., Coburn, T. G., Reys, R. E., & Wilson, J. W.(1976). Notes from National Assessment: Estimation. Arithematics Teacher, 23, 296-302.
    Carpenter, T. P., Corbitt, M. K., Kepner, H. S., Jr. Lindquist, M. M. & Resy, R. E.(1980). National assessment: A perspective of students’ mastery of basic mathematics skills. In M. M. Lindquist(Ed.)., Selected issues in mathematics education (pp.215-257). Chicago: National Society for the Study of Education, & Reston, VA: NCTM.
    Carraher, T. N., Carraher, D. W., & Schliemann, A. D.(1985). Mathematics in the streets and in schools. British Journal of Developmental Psychology, 3, 21-29.
    Carraher, T. N., Carraher, D. W., & Schliemann, A. D.(1987). Written and oral mathematics. Journal for Research in Mathematics Educaiton, 18(2), 83-97.
    Carraher, T. N., Schliemann, A. D.., & Carraher, D. W (1988). Mathematical concepts in everyday life.In G. B. Saxe & M. Gearhart (Eds.)., New directions for child development, # 41:Children’s mathematics (pp. 71-87). San Francisco: Jossey-Bass.
    Case, R. (1985). Intellectual development. Orlando, FL: Academic.
    Case, R.(1989).Fostering the development of children’s number sense . In J. T. Sowder & B. P. Schappelle(Eds.). Establishing foundations for researh on number sense and related topics: Report of conference (pp.57-64). San Diego: San Diego State University Center for Research in Mathematics and Science Education.
    Case, R., & Griffin, S.(1990). Child cognitive development: The role of central conceptual structures in the development of scientific and social thought. In C. A. hauert (Ed.)., Advances in psychology-Developmental Psychology: Cognitive, perceptuo-motor and neurological perspectives (pp.193-220). Amsterdam: North Holland.
    Case, R., & Sowder, J. T.(1990). The development of computational development: Psychological and anthropological perspectives. In E. Fennema, T. P. Carpenter, & S. J. Lamon (Eds.)., Intergrating research on teaching and learning mathematics (pp.92-130). Madison, WI: National Center for Research in Mathematical Science Educaiton.
    Chard, D., Gersten, R.(1999). Number Sense: Rethinking Arithmetic Instruction for Students with Mathematical Disabilities. Journal of Special Education,33 (1) ,18-28
    Cobb, P.(1988). The tension between theories of learning and instruction in mathematics educaiton. Eduatinal Psychologist, 23(2), 87-103.
    Cobb, P., & Merkel, G.(1989). Thinking strategies: Teaching arithematic through problem solving. In P. R. Trafton & A. P. Shulte (Eds.)., New direction for elementary school mathematics (pp.70-81). Reston, VA:NCTM.
    Cobb, P., Yackel, E., & Wood, T.(1988). Curriculum and teacher development: Psychological and anthripological perspectives. In Fennema, T. P. Carpenter, & S. J. Lamon (Eds.), Intergrating research on teaching and learning mathematics (pp.92-130). Madison, WI: National Center for Research in Mathematics Science Educaiton.
    Cohen, D., (Ed).(1993). Standards for Curriculum and Pedagogical Reform in Two-Year College and Lower Division Mathematics. Circulating Draft.
    Das, J. P., Naglieri, J. A., & Kirby, J. R. (1993). Assessment of cognitive processes: The PASS theory of intelligence. Boston: Allyn & Bacon.
    Day J. D., Engelhardt J L., Maxwell S. E. & Bolig E. E.(1997).Comparison of Static and Dynamic Assessment Procedures and Their Relation to independent Performance. Journal of Educational Psychology, 89(2),358-368.
    Day, J. D., & Cordon, L. A. (1993). Static and dynamic measures of ability: An experimental comparison. Journal of Educational Psychology, 85,75-82.
    Dehaene, S, Dehaene-Lambertz, G., et al(1998). Abstract representations of numbers in the animal and... Trends in Neurosciences, 21(8), 355-361
    Dehaene, S.(1997).The Number Sense: How the Mind Creates Mathematics.Oxford University Press.
    Doer, A., Flood, A. & Hook, L. (1993). Estimation strategies of mathematicians and two student groups, Unpublished manuscript.
    Dowker, A. (1989). Computational estimation by young children. Paper presented at the Conference of the British Society for Research into learning Mathematics, Brighton Polytechnic, Brighton, England.
    Dowker, A. (1992). Computational estimation strategies of professional mathematicians, Journal for Research in Mathematics Education, 23, pp. 45-55.
    Edwards, Allen.(1984). Computational Estimation for Numeracy. Educational Studies in Mathematics ,15(1),59-73
    Elliott, J. (2000). Dynamic assessment in education: Purpose and promise. In Lidz, C. & Elliott, J. (eds.). Dynamic assessment: Prevailing models and application (pp.713-740). New York: ElSEVIER SCIENCE Inc.
    Embretson,S.(1987).Improving the Measurement of Spatial Aptitude by Dynamic Testing .Intelligence, 11,333-358.
    Embretson,S.(1987).Toward Development of a Psychometric Approach. In C.S. Lidz (Ed.). Dynamic assessment: An interactional approach to evaluating learning potential.; New York: Guilford Press.
    Embretson,S.(1992).Measuring and Validating Cognitive Modifiability as an Ability : A Study in the Spatial Domain . Journal of Educational Measurement, 29(1),25-50.
    English, Lyn D. (1997) .The Development of Fifth-Grade Children's Problem-Posing Abilities. Educational Studies in Mathematics ,34(3) ,183-217 .
    English, Lyn D. (1998). Children’s Problem-Posing Abilities within Formal and Informal Context. Journal for Research in Mathematics Education,29(1) ,83-106 .
    Forrester, M. A. & Pike, C. D. (1998). Learning to estimate in the mathematics classroom: a conversation analytic approach, Journal for Research in Mathematics Education, 29(3), 334-356.
    Forrester, M.A., Latham, J. & Shire, B. (1990). Exploring estimation in young primary school children, Educational Psychology, 10, pp. 283-300.
    Fuson, K. C., & Hall J. W.(1983). The acquisition of early number word meanings: A conceptual analysis and review. In H. P. Ginsburg (Ed.)., The development of mathematical thinking (pp.49-107). New YorK: Academic.
    Gagne', E. D., Yekovich, C. W., & Yekovich, F. R. (1993). ; The cognitive psychology of school learning (3rd ed.). New York, NY: Harper Collins College Publisher.
    Gelman, R., & Gallistel, C. R.(1978). The child’s understanding of number. Cambridge, MA: Harvard Universty Press.
    Ginsburg, H.(1977). Children’s arithmetic: The learning process. New York: Van Nostrand.
    Ginsburg, H.P., Posner, J. K., & Russell, R. L.(1981). The development of mental addition as a function of schooling and culture. Journal of Cross-Culture Psychology, 12(2), 163-178.
    Goretskii, V. G.(Ed.).(1979). Teaching mathematics in grade one: Handbook for teachers. Moscow: Prosveshchenie.
    Greenes, C.(1993). Developing Sense about Numbers. Arithmetic Teacher,40(5), p279-84
    Greeno, J. G. (1991). Number sense as situated knowing in a conceptual domain, Journal for Research in Mathematics Education, 22, pp. 170-218.
    Greeno, J. G.(1989).Some conjectures about number sense . In J. T. Sowder & B. P. Schappelle(Eds.). Establishing foundations for researh on number sense and related topics: Report of conference(pp.43-56). San Diego: San Diego State University Center for Research in Mathematics and Science Education.
    Gresham, G., Sloan, T. Vinson, B.(1997). Reducing Mathematics Anxiety in Fourth Grade "At-Risk" Students.( ED417931).
    Griffin, S. A.(1998). Fostering the development of whole number sense. Paper presented at the annual meeting of American Educational Research Association, San Diego: San Diego State University Center for Research in Mathematics and Science Education.
    Griffin, S. A., Case, R., & Siegler, R. S.(1994). Rightstart: Providing the central conceptual prerequisites for first formal learning of arithmetic to students at risk for school failure. In K. McGilly(Ed.). ,Classroom lessons: Integrating cognitive theory and classroom practice(pp.25-49). Cambridge, MA: MIT Press.
    Guthke, J. (1993). Developments in learning potential assessment. In J. H. M. Hamers, K. Sijtsma, & A. J. J. M. Ruijssenaars (Eds.)., Learning potential assessment: Theoretical, methodological and practical issues (pp. 43-67). Amsterdam/Berwyn, PA: Swets & Zeitlinger.
    Hamers, J. H. M., Sijtsma, K., & Ruijssenaars, A. J. J. M. (Eds.). (1993). Learning potential assessment: Theoretical, methodological and practical issues. Amsterdam/Berwyn, PA: Swets & Zeitlinger.
    Hankes, J. E.(1996). Investigating the Advantages of Constructing Multidigit Numeration Understanding through Oneida and Lakota Native Languages. Paper presented at the Annual Conference of the Mid-Western Educational Research Association
    Hankes, J. T.& Whirlwind S, L.& Davis, A.(1998). Investigating the Advantages of Constructing Multidigit Numeration Understanding through Oneida and Lakota Native Languages. Journal of American Indian Education.38(1), p15-35
    Hart, K.(1981). Children’s understanding of mathematics: 11-16. London: John Murray.
    Hatano, G.(1988). Social and motivation bases for mathematical understanding. In G. B. Saxe, & M. Gearhart (Eds.)., New direction for child development, #41: Children’s mathematics (pp.55-70). San Francisco: Jossey-Bass.
    Haywood H. C. & Wingenfield S. A. (1992). Interactive Assessment as a Research Tool. Journal of Special Education, 26(3),253-268.
    Hiebert, J.(1989).Reflections after the number sense conference . In J. T. Sowder & B. P. Schappelle(Eds.). Establishing foundations for researh on number sense and related topics: Report of conference (pp.82-84). San Diego: San Diego State University Center for Research in Mathematics and Science Education.
    Hiebert, J., & Wearne, D.(1986). Conceptual and procedual knowledge in mathematics: An introductory analysis . In J. Hiebert (Ed.)., Conceptural and procedural knowledge: The case of mathematics (pp.199-233). Hillsdale, NJ: Lawrence Erlbaum Associates.
    Hope, J. A.(1987). A case study of a highly skilled mental calculator. Journal for Research in mathematics education, 18(5), 331-342.
    Howden, H.(1989). Teaching number sense. Arithematic Teacher, 36(6), 6-11.
    Jensen, R. J. (Ed.)(1993). Research Ideas for the Classroom: Early Childhood Mathematics. Reston, Va: National Council of Teachers of Mathematics.
    Jitendra A. K. & Kameenui E. J. (1993). Dynamic Assessment as a Compensatory Assessment Approach: A Description and Analysis. Remedial and Special Education ,14 (5), 6-18
    Jitendra A. K. & Kameenui E. J. (1996). Experts' and Novics' Error Patterns in Solving Part-Whole Mathematics Word Problems.The Journal of Educational Research , 90(1), 42-51.
    Johson, S.(1989). Make a million. The Elementary Mathematician, 3(3),3-5.
    Karpov, Y. V. & Gindis, B. (2000). Dynamic assessment of the level of internalization of elementary school children’s problem-solving activity. In Lidz, C. & Elliott, J. (eds.). Dynamic assessment: Prevailing models and application (pp.133-154). New York: ElSEVIER SCIENCE Inc.
    Keijzer, R. & Terwel, J.(2000). Learning for Mathematical Insight: A Longitudinal Comparison of Two Dutch Curricula on Fractions. . 2000
    Kerslake, D.(1986). Fractions: Children’s strategies and errors. Windsor, England: NFER-NELSON.
    Kerwin, M. E. (1989). Static versus dynamic assessments of intelligence. Unpublished doctoral dissertation, University of Notre Dame, IN.
    Kosslyn, S. M., Margolis, J.A., Barrett, A.M., Goldknopf, E.J. & Daly, P.F. (1990). Age differences in imagery abilities, Child Development, 61, pp. 995-1010.
    Kouba, V. L., Carpenter, T. P., & Swafford, J. O.(1989). Number and operations. In M. M. Lindquist (Ed.)., Results from the Fourth Mathematics Assessment of the National Assessment of Educational Progress (pp.64-93).
    Kragler ,S.(1986).Dynamic versus Static testing :Impact on Testing Placement of Reading Underachievers [CD-rom] Abstract from : ProQuest. File: Dissertation Abstracts Item:8618648.
    Kravchenko, V. S., & Oksnab, L. S., & Yankovskaya, N. A.(1979). Oral exercises in mathematics, Grade 1-3. Moscow: Proveshchenie.
    Lampert, M.(1988). Connecting mathematical teaching and learning. In E. Fennema, T. P. Carpenter, & S. J. Lamon (Eds.)., Integrating research on teaching and learning mathematics (pp.132-165). Madison, WI: National Center for Research in Mathematics Sciences Education.
    Laughon P.(1990).The Dynamic Assessment of Intelligence :A Review of Three Approaches. School Psychology Review, 19(4),459-470.
    Lerman, S. (1996). Intersubjectivity in mathematics learning: a challenge to the radical constructivist paradigm? Journal for Research in Mathematics Education, 27, pp. 133-150.
    Lester,F.K.(1985).Methodological considerations in research on mathematical problem-solving instruction. In Edward A.Silver (Eds). Teaching and Learning mathematical problem solving: multiple research perspectives. Hillsdale, NJ:Lawrence Erlbaum.
    Levin, D. R. (1982). Strategy use and estimation ability of college students. Journal for Research in mathematics Education, 13(5), 350-359.
    Lids, C. S., & Greenberg, K. H. (1996). Using a group dynamic assessment procedure to investigate the relationship between cognitive processes and academic achievement in rural first grade regular education students. Manuscript submitted for publication.
    Lidz C.S.(1991). Dynamic Assessment Approach. In Flanagan, D. P., Genshaft, J. L., & Harrison, P. L. (Eds.). Contemporary intellectual assessment: theories, tests, and issues. (pp.281-pp.296). NY: Guilford.
    Lidz C.S.(1991). Practioner's guide of dynamic assessment.New York : The Guilford Press.
    Lidz, C.S. (2000). The application of cognitive functions scale (ACFS): An example of curriculum-based dynamic assessment. In Lidz, C. & Elliott, J. (eds.). Dynamic assessment: Prevailing models and application (pp.407-442). New York: ElSEVIER SCIENCE Inc.
    Mack, N. K.(1988). Using estimation to learn fractions with understanding. Paper presented at the annual meeting of the American Education Research Association, New Orleans.
    Markovits, Z. & Sowder, J. (1988). Mental computation and number sense. In M. J. Behr, C. B. Lacampagne, & M. M. Wheeler (Eds.).,PME-NA: Proceedings of the Tenth Annual Meeting (pp.58-64). Dekalb: Northern Illinois University.
    Markovits, Z. & Sowder,J.(1994). Developing Number Sense: An Intervention Study in Grade 7. Journal for Research in Mathematics Education; v25 n1 p4-29
    Markovits, Z.(1989).Reactions to the number sense conference . In J. T. Sowder & B. P. Schappelle(Eds.). Establishing foundations for researh on number sense and related topics: Report of conference(pp.78-81). San Diego: San Diego State University Center for Research in Mathematics and Science Education.
    Marshall, S. P.(1989).Retrospective paper: Number sense Conference. In J. T. Sowder & B. P. Schappelle(Eds.). Establishing foundations for researh on number sense and related topics: Report of conference(pp.40-42). San Diego: San Diego State University Center for Research in Mathematics and Science Education.
    McIntosh, A., Reys, B. J., & Reys, R. E.(1992). A Proposed Framework for Examining Basic Number Sense. For the Learning of Mathematics; v12 n3 p2-8.
    McIntosh, A., Reys, B. J., Reys, R. E., Bana, J., & Farrel, B.(1997). Number Sense in School Mathematics: Student Performance in four countries. MASTEC: Mathematics, Sciences & Technology Education Centre.
    Meltzer, L. J. (1992). Strategy use in students with learning disabilities: the challenge of assessment. In L. Meltzer (Ed.)., Strategy assessment and instruction students with learning disabilities: From theory to practice (pp. 93-135). San Antonio, TX: Pro-ED.
    Meltzer, L. J., & Reid, D. K. (1994). New directions in the assessment of students with special needs: The shift toward a constructivist perspective. Journal of Special Education, 28, 338-355.
    National Council of Teacher of Mathematics (1989).Curriculum and valuation standards for School Mathematics. Reston, Va:National Council of Teacher of Mathematics.
    National Council of Teacher of Mathematics (1995). Assessment Standards for School Mathematics. Reston, Va:National Council of Teacher of Mathematics.
    National Council of Teacher of Mathematics (2000). Principles and Standards for School Mathematics. Reston, Va:National Council of Teacher of Mathematics.
    Norman L.Webb & Arthur F.Coxford (1993). Assessment in the Mathematics Classroom 1993 yearbook. Va:National Council of Teacher of Mathematics.
    Northwest Regional Educational Laboratory (1992).Assessing Mathematical Power. Classroom Assessment Training Program, Va: Northwest Regional Educational Laboratory.
    Olivier, A. I., Murray, H., & Human, P.(1990). Building on young children’s informal arithmetical konwledge. In G. Booker, P. Cobb, & T. de Mendicuti (Eds.)., Proceedings of the fourteenth annual meeting: International Group for the Psychology of Mathematics Education (Vol.3, pp.297-304). Gobierno del Estado de Morelos, Mexico: CONACYT.
    Oswang, L. B., & Bain, B. A. (1991). Clinical forum: Treatment efficacy when to recommend intervention. Language, Speech, and Hearing Services in Schools, 22, 255-263.
    Owens, Douglas T.(Ed.)(1993). Research Ideas for the Classroom: Middle Grades Mathematics. Va: National Council of Teacher of Mathematics
    Paulos, J. A.(1988). Innumeracy: Mathematical liilteracy and its consequences. New York: Hill & Wang.
    Peck, D. M., & Jencks, S. M.(1981). Conceptual issues in the teaching and learning of fractions. Journal for Research in Mathematics Education, 12(5), 339-348.
    Peňa, E. (1993). Dynamic assessment: A non-biased approach for assessing the language of young children. Unpublished doctoral dissertation, Temple University, Philadelphia.
    Peňa, E., Quinn, R>, & Iglesias, A. (1992). Application of dynamic methods of language assessment: A nonbiased approach. Journal of Special Education, 26, 269-280.
    Peterson, P. L., Fennema, E., & Carpenter, T. P.(1991). Teacher’s knowledge of students’ mathematics problem solving knowledge. In J. E. Brophy(Ed.), Advances in research on teaching: Vol.2. Teachers’ subject matter knowledge (pp.49-86). Greenwich, CT: JAI Press.
    Petitto, A. L., & Ginsburg, H. P.(1982). Mental arithmetic in Africa and America: Strategies, principles, and explanations. International Journal of Psychology, 17, 81-102.
    Pike, C. D., Forrester, M. A.(1997).The influence of number-sense on children's ability to estimate measures. Educational Psychology,17(4), p483-500
    Rand,Y.,& Kaniel,S.(1987).Group administration of the LPAD. In C.S. Lidz (Ed.),Dynamic assessment :An interactional approach to evaluating Learning potential. New York: The Guilford Press.
    Resnick, L. B.(1983).A developmental theory of number understanding. In H, P. Ginsburg (Ed.), The development of mathematical thinking (pp.109-151).Orlando, FL: Academic.
    Resnick, L. B.(1986).The development of mathematical intuition. In M. Perlmutter (Ed.),Perspectives on intellectual development: The Minnesota Symposia on Child Psychology (pp.159-194). Hillsdale, NJ: Lawrence Erlbaum Associates.
    Resnick, L. B.(1987a).Constructing knowledge in School. In L. S. Liben (Ed.), Development and learning: Conflict or congruence? (pp.19-50). Hillsdale, NJ: Lawrence Erbaum Associates.
    Resnick, L. B.(1987b). Education and learning to think. Washington, DC: National Academy Press.
    Resnick, L. B.(1989a).Defining, assessing, and teaching number sense. In J. T. Sowder & B. P. Schappelle(Eds.). Establishing foundations for researh on number sense and related topics: Report of conference(pp.35-39). San Diego: San Diego State University Center for Research in Mathematics and Science Education.
    Resnick, L. B.(1989b).Developing mathematical knowledge. American Psychologist, 44(2), 162-169.
    Resnick, L. B.(1990). From Protoquantities to Number Sense. In G. Booker, P. Cobb, & T. de Mendicuti (Eds.), Proceedings of th fourteenth annual meeting: International Group for the Psychology of Mathematics Education (Vol.3, pp.305-311). Gobierno del Estado de Morelos, Mexico:CONACYT.
    Resnick, L. B., & Omanson, S. F.(1987).Learning to understand arithmetic. In R. Glaser (Ed.), Advances in instructional psychology (pp.41-95). Hillsdale, Nj: Lawrence Erlbaum Associates.
    Reys, B. B.(1989).Conference on number sense: Reflections . In J. T. Sowder & B. P. Schappelle(Eds.). Establishing foundations for researh on number sense and related topics: Report of conference(pp.70-73). San Diego: San Diego State University Center for Research in Mathematics and Science Education.
    Reys, Barbara J.; And Others.(1991). Developing Number Sense. Curriculum and Evaluation Standards for School Mathematics Addenda Series, Grades 5-8. .
    Reys, R. E.(1989).Some personal reflections on the conference . In J. T. Sowder & B. P. Schappelle(Eds.). Establishing foundations for researh on number sense and related topics: Report of conference (pp.65-66). San Diego: San Diego State University Center for Research in Mathematics and Science Education.
    Reys, R. E.(1998).Computation versus Number Sense. Mathematics Teaching in the Middle School,4(2) ,110-12.
    Reys, R. E., Rybolt, J. F., & Bestgen, B. J., & Wyatt, J. W.(1982).Processes used by good computational estimators. Journal for Research in Mathematics Educaiton, 13(3),183-201.
    Reys, R. E.; Yang, D.C.(1998). Relationship between computational performance and number sense among sixth-and eighth-grade students in Taiwan. Journal for Research in Mathematics Education, 29(2), p225-237.
    Reys, R., Reys, B., McIntosh, A., Emanuelsson, G., Johansson, B., Yang, D. C.(1999). Assessing Number Sense of Students in Australia, Sweden, Taiwan, and the United States. School Science and Mathematics,99(2) ,61-70
    Richardson, K.(1997). Too Easy for Kindergarten and Just Right for First Grade. Teaching Children Mathematics; 3(8), p432-37
    Riley, M. S., Greeno, J. G., & Heller, J. I.(1983).Development of children’s problem-solving ability in arithmetic. In H. P. Ginsburg (Ed.), The development of mathemaitcal thinking (pp.153-196). New York: Academic.
    Rosch, E.(1973). On the internal structure of perceptual and semantic categories. In T. E. Moore (Ed.), Cognitive development and acquistion of language. New York: Academic.
    Roseberry, C. A., & Connell, P. J. (1991). The use of an invented language rule in the differentiation of normal and language-impaired Spanish-speaking children. Journal of Speech and Hearing Research, 34, 569-603.
    Rubenstein, R. N.(1985). Computational estimation and related mathematical skills. Journal for Research in Mathematics Educaiton, 16(2), 106-119.
    Sackur-Grisvard, C., & Leonard, F.(1985). Intermediate cognitive organization in the process of learning a mathematical concept: The order of positive decimal numbers. Cognition and Instruction, 2(2), 157-174.
    Saxe, G. B.(1988). Candy selling and math learning. Educational Researcher, 6(6), 14-21.
    Schoen, H. L.(1989).Reaction to the conference on number sense . In J. T. Sowder & B. P. Schappelle(Eds.). Establishing foundations for researh on number sense and related topics: Report of conference(pp.67-69). San Diego: San Diego State University Center for Research in Mathematics and Science Education.
    Schoen, H.L. & Zweng, MJ. (1986). (Eds). Estimation and Mental Computation: 1986 yearbook .Virginia, National Council of Teachers of Mathematics.
    Siegel, A.W., Goldsmith, L.T. & Madson, C.R. (1982). Skill in estimation problems of extent and numerosity, Journal for Research in Mathematics Education, 13, pp. 211-232.
    Silver, E. A.(1989).On making sense of number sense . In J. T. Sowder & B. P. Schappelle(Eds.). Establishing foundations for researh on number sense and related topics: Report of conference(pp.92-96). San Diego: San Diego State University Center for Research in Mathematics and Science Education.
    Sowder, J. T.(1992a). Estimation and number sense, in: D.A. Grouws (Ed.). Handbook of Research in Mathematics Teaching and Learning (pp. 371-389). New York: Macmillan.
    Sowder, J. T.(1992b). Making sense of number in school mathematics. In G. R. Leihardt & R. Hattrup (Eds.). Ayalysis of Arithmetic for Mathematics Teaching (pp. 371-389). Hillsdale, Nj:Erbaum.
    Sowder, J. T.(1993). Number sense and related topics. In D. T. Owen (Ed.). Research ideas for the classroom: Middle grade mathematics. (pp. 41-57). New York: Macmillan.
    Sowder, J. T., & Markovits, Z.(1989). Effect of instruction on number magnitude. In C. A. Maher, G. A. Goldin, & R. B. Davis (Eds.), Proceedings of the eleventh annual meeting: North American Chapter of the International Group for the Psychology of Mathematics Education (pp.105-110). New Brunswick, NJ: Center for Mathematics, Sciences and Computer Education, Rutgers-The State University of New Jersey.
    Sowder, J. T., & Markovits, Z.(1990). Relative and absolute error in computational estimation. In G. Booker, P. Cobb, & T. de Mendicuti (Eds.), Proceedings of the fourteenth annual meeting: International Group for the Psychology of Mathematics Education (Vol.3, pp.321- 328). Gobierno del Estado de Morelos, Mexico: CONACYT.
    Sowder, J. T., & Schappelle, B. P. (Eds.).(1989). Establishing foundations for researh on number sense and related topics: Report of conference. San Diego: San Diego State University Center for Research in Mathematics and Science Education.
    Sowder, J. T., & Wheeler, M. M.(1987). The development of computational estimation and number sense: Two exploratory studies (Research Report). San Diego: San Diego State University Center for Research in Mathematics and Science Education.
    Sowder, J. T., & Wheeler, M. M.(1989). The development of concepts and strategies used in computational estimation. Journal for Research in Mathematics Education, 20(2), 130-146.
    Spector, J. E. (1992). Predicting progress in beginning reading: Dynamic assessment of phonemic awareness. Journal of Educational Psychology, 84, 353-363.
    Speece, D. L., Cooper, D. H., & Kibler, J. M. (1990). Dynamic assessment, individual differences, and academic achievement. Learning and Individual differences, 2, 113-127.
    Stanger, L. S. & Symington, L.(2000). Teaching number concepts to all students. Teaching Exceptional Children, 33(1), p65-69.
    Swanson , H. Lee.(1995).Using the Cognitive Processing Test to Assess Ability: Development of Dynamic Assessment Measure . School Psychology Review, 24(4),672-693.
    Swanson, H. L. (1992). Generality and modifiability of working memory among skilled and less skilled readers. Journal of Educational Psychology, 84, 473-488.
    Swanson, H. L. (1995a). Effects of dynamic testing on the classification of learning disabilities: The predictive and discriminant validity of the S-CPT. Journal of Psycho educational Assessment, 13, 204-229.
    Swanson, H. L. (1995b). Using the cognitive processing test to assess ability: Development of a dynamic assessment measure. School Psychology Review, 24, 672-693.
    Swanson, H. L. (2000). Swanson-cognitive processing test: Review and application. In Lidz, C. & Elliott, J. (eds.). Dynamic assessment: Prevailing models and application (pp.71-107). New York: ElSEVIER SCIENCE Inc.
    Thompson, C. S. & Rathmell, E. C. (1989). By way of introduction. Arithmetic Teacher,36 (6), 2-3.
    Threadgill-Sowder, J.(1984). Cmputational estimation procedures of school children. Journal of Education Research, 77(6), 332-336.
    Trafton, P. R.(1989).Reflections on number sense conference . In J. T. Sowder & B. P. Schappelle(Eds.). Establishing foundations for researh on number sense and related topics: Report of conference(pp.74-77) San Diego: San Diego State University Center for Research in Mathematics and Science Education.
    Trafton, P. R., Hartman, C. L.(1997).Developing number sense and computational strategies in…Teaching Children Mathematics, 4(4), p230-233
    Trafton, P.R., Zawojewski, J. S.(1990). Implementing the Standards. Meanings of Operations. Arithmetic Teacher ,38(3) .18-22.
    Turkel, S. & Newman, C. M.(1988). What's Your Number? Developing Number Sense. Arithmetic Teacher,v35 n6, p53-55
    Tzuriel, D. (2000). The cognitive modifiability battery (CMB): Assessment and intervention. In Lidz, C. & Elliott, J. (eds.) Dynamic assessment: Prevailing models and application (pp.375-406). New York: ElSEVIER SCIENCE Inc.
    Valencia, S. W., Campione, J. C., Weiner, S., & Bazzi, S. (1990, November). Dynamic assessment of reading achievement. Paper presented at the National Reading Conference, Miami, FL.
    Van de Walle, J. A.(1998). Elementary and Middle School Mathematics: Teaching Developmentally. Third Edition. .
    Vygotsky,L.S.(1984).Problema vozrata (The problem of age). In L.S. Vygotsky, Sobranie sochinenil: detskaia psikhologua (pp.244-268). Moscow: Pedagogika.
    Wearne, D., & Hiebert, J.(1988a). Constructing and using meaning for mathematics symbols: The case of decimal fractions. In J. Hiebert & M. Behr (Eds.), Number concepts and operations in the middle grades (pp.220-235). Hillsdale, NJ: Lawrence Erlbaum Associates and Reston, VA: NCTM.
    Wearne, D., & Hiebert, J.(1988b). A Cognitive approach to meaningful mathematics instruction: Testing a local theory using decimal numbers. Journal for Research in Mathematics Education, 19(5), 371-384.
    Wilson, J.(2000). Assessing student metacognitive behavior during mathematical problem solving. Paper presented at the ICME 9 Conference.

    QR CODE