研究生: |
戴谷州 Ku-Chou Tai |
---|---|
論文名稱: |
視覺化工具融入程式語言教學對初學者學習成效與學習態度之探討 Integrating the Visualization Tool into Programming Language Course and Prior Knowledge on Novices' Learning Performance and Learning Attitudes |
指導教授: |
陳明溥
Chen, Ming-Puu |
學位類別: |
碩士 Master |
系所名稱: |
資訊教育研究所 Graduate Institute of Information and Computer Education |
論文出版年: | 2011 |
畢業學年度: | 99 |
語文別: | 中文 |
論文頁數: | 112 |
中文關鍵詞: | 程式語言教學 、先備知識 、視覺化工具 、Jeliot 、學習成效 、學習態度 |
英文關鍵詞: | programming language learning, prior knowledge, visualization tool, Jeliot, learning performance, learning attitudes |
論文種類: | 學術論文 |
相關次數: | 點閱:298 下載:17 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
藉由資訊處理理論所衍生之的雙碼理論學習概念,本研究探討學習程式語言時使用視覺化工具,並透過教學者利用妥善設計的教學活動來進行程式語言教學,對於學習者學習成效與學習態度之影響。期望透過教學者適切地將視覺化工具融入程式設計教學活動中,以培養學習者有效運用視覺化工具增加程式語言學習成效,同時提升學習者之正向學習態度。
本研究旨在探討不同先備知識學習者使用視覺化工具對程式語言學習成效與學習態度之影響。研究工具以視覺化工具Jeliot 3融入Java程式語言教學進行教學,目的在探討視覺化工具融入程式語言教學,對學習者學習成效與學習態度之影響。研究對象為資管系一年級學生,年齡分布於 16~20 歲之間,有效樣本總共 79 人,實驗教學活動為期三週,學習單元是for迴圈,共計 390 分鐘。學習成效是探討學習者之學習的表現情形,分為「整體概念」、「基本概念」與「進階概念」三個面向;學習態度主要探討學習者在實驗教學活動之後在「學習滿意度」、「學習幫助度」、「自我效能」、「學習焦慮」以及「主動學習與思考」等面向之看法與感受。
研究結果發現:(1)高先備知識程度之學習者其程式語言for迴圈之學習成效比低先備知識程度者顯著來的好;(2)使用Jeliot 3之學習者在程式語言for迴圈的學習成效表現進步幅度較未使用Jeliot 3者大;(3)低先備知識程度之學習者在程式語言for迴圈的學習成效表現進步幅度較高先備知識程度者大;(4)使用Jeliot 3之高先備知識之學習者,其學習焦慮程度比其他學習者來的低;(5)使用Jeliot 3能協助學習者在程式語言for迴圈的學習滿意度、學習幫助度和主動學習與思考產生正向之學習態度表現。
According to dual-code theory derived from the information processing theory, this study discussed the learners’ learning performance and learning attitudes when the teacher leverages the visualization tool and well-designed learning activities in programming language course. The researcher expected that integrating the visualiztion tool into programming language course may train the learners to use the visualiztion tool for learning effectively, promote learners’ learning performance and attitudes toward learning.
The purpose of this study was to dicuss the effects of learning programming language and learners’ learning attitudes by using the visualization tool based on different levels of learner’s prior knowledge. This study used a visualization tool, Jeliot 3, to assist Java programming language training. There were 79 freashmen in Department of Information Management, whose ages ranged from 16 to 20 years old, and participated in the 3 weeks, a total of 390 minutes ‘for loop’ programming learning section. The analysis for learners' learning performance included overall conceptions, basic conceptions and advanced conceptions, whereas the analysis for learners' learning attitudes included five aspects, which were learning satisfaction, learning support, self efficiency, learning anxiety and active learning and thinking.
The results revealed that (a) learners with high prior knowledge performed significantly better than those with low prior knowledge; (b) the learning performance of the learners using Jeliot 3 made much more progress in ‘for loop’ programming section; (c) the learning performance of the learners with low prior knowledge made much more progress in ‘for loop’ programming section; (d) learners using Jeliot 3 with high prior knowledge had more positive attitude in aspect of learning anxiety, which meant their learning anxiety is lower than the other learners; (e) the application of Jeliot 3 promoted learners’ attitudes of learning satisfaction, learning support, active learning and thinking on programming language learning.
中文部分
余志鴻(2007)。數位學習互動模式對學習者資訊技能學習成效與態度之影響。未出版碩士論文,國立台灣師範大學,台北市。
吳明隆、涂金堂(2005)。SPSS 與統計應用分析。臺北:五南。
吳文萍(2007)。不同學習支持對高職生程式設計學習之影響。未出版碩士論文,國立台灣師範大學,台北市。
陳明溥(1999)。雙碼理論於遞迴程式設計教學之概念模型設計研究。第八屆電腦輔助教學國際研討會大會論文,臺中市,逢甲大學,3月18-20日。
陳明溥(2007)。程式語言課程之教學模式與學習工具對初學者學習成效與學習態度之影響。師大學報,52,1-21。
張春興(1996)。教育心理學:三化取向的理論與實踐。台北市:東華。
張素芬(2009)。國小資訊教育實施 Scratch 軟體教學之研究。未出版碩士論文,高雄師範大學,高雄市。
鍾靜宜(2004)。教學策略與學習工具對高中程式語言學習之影響。未出版碩士論文,國立台灣師範大學,台北市。
英文部分
Anderson, L. W., & Krathwohl, D. R. (2001). A taxonomy for learning, teaching, and assessing: A revision of Bloom’s taxonomy of educational objectives (Chapter 3, pp. 27-37). New York: Longman.
Anderson, L. W., & Krathwohl, D. R. (2001). A taxonomy for learning, teaching, and assessing: A revision of Bloom’s taxonomy of educational objectives (Chapter 5, pp.63-92). New York: Longman.
Baecker, R. (1981). Sorting out sorting. Videotape, 30 minutes, presented at ACM SIGGRAPH ’81 and excerpted in ACM SIGGRAPH Video Review #7.
Bagui, S. (1998). Reasons for increased learning using multimedia. Journal of Educational Multimedia and Hypermedia, 7(1), 3-18.
Bednarik, R., Moreno, A., Myller N., & Sutinen, E. (2005). Smart program visualization technologies: planning a next step. Proceedings of the 5th IEEE International Conference on Advanced Learning Technologies (ICALT 2005), Kaohsiung, Taiwan. IEEE Computer Society, 717–721.
Ben-Bassat Levy, R., & Ben-Ari, M. (2007). We work so hard and they don't use it: Acceptance of software tools by teachers, ACM SIGCSE Bulletin, 39(3), 246-250.
Ben-Bassat Levy, R., Ben-Ari, M., & Uronen, P.A. (2001). An extended experiment with Jeliot 2000. Proceedings of the First Program Visualization Workshop (pp. 131-140), Joensuu, Finland.
Ben-Bassat Levy, R., Ben-Ari, M., & Uronen, P. A. (2003). The Jeliot 2000 program animation system. Computers & Education, 40(1), 15–21.
Bergin, J. (2000). Fourteen pedagogical patterns for teaching computer science. Proceedings of the Fifth European Conference on Pattern Languages of Programs (EuroPLop 2000), Irsee, Germany.
Boles, W. W., Pillay, H., & Raj, L. (1999). Matching cognitive styles to computer-based instruction: An approach for enhanced learning in electrical engineering. Journal of Engineering Education, 24(4), 371-383.
Brusilovsky, P., & Spring, M. (2004). Adaptive, engaging, and explanatory visualization in a C programming course. Proceedings of the 2004 World Conference on Educational Media, Hypermedia, and Telecommunications, 1264-1271.
Byrne, M. D., Catrambone, R., & Stasko, J. T. (1999). Evaluating animations as student aids in learning computer algorithms. Computers & Education, 33(4), 253–278.
Chandler, P., & Sweller, J. (1991). Cognitive load theory and the format of instruction. Cognition and Instruction, 8(4), 293-332.
Clark, J. M., & Paivio, A. (1991). Dual coding theory and education. Educational Psychology Review, 3(3), 149-210.
Clark, R., Nguyen, F., & Sweller, J. (2006). Efficiency in learning: Evidence-based guiedlines to manage cognitive load. San Francisco: John Wiley & Sons, Inc. (EIL)
Choi-koh, S. S. (2000). A problem-solving model of quadratic min values using computer. Journal of Instructional Media, 27(1), 73-82.
Corich, S., Kinshuk, & Hunt, L. M. (2004). Assessing discussion forum participation: In search of quality. International Journal of Instructional Technology and Distance Learning, 1(12), 3-11.
De Wever, B., Schellens, T., Valcke, M., & Van Keer, H. (2006). Content analysis schemes to analyze transcripts of online asynchronous discussion groups: A review. Computers & Education, 46(1), 6-28.
Felleisen, M., Findler, R. B., Flatt, M., & Krishnamurthi, S. (2004). The teachScheme! project: Computing and programming for every student. Computer Science Education, 14(1), 55-77.
Gill, T. G., & Helton, C. F. (2006). A self-paced introductory programming course. Journal of Information Technology Education, 5, 95–105.
Govender, I., & Grayson, G. J. (2008). Pre-service and in-service teachers experiences of learning to program in an object-oriented language. Computers & Education, 51, 874–885.
Gyselick, V., Ehrlich, M. -F., Cornoldi, C., De Beni, R., & Dubois, V. (2000). Visuospatial working memory in learning from multimedia system. Journal of Computer Assisted Learning, 16(2), 167-176.
Iding, M. (2000). Is seeing believing? Features of effective multimedia for learning science. International Journal of Instructional Media, 27(4), 403-415.
Jadud, M. J. (2005). A first look at novice compilation behaviour using BlueJ. Computer Science Education, 15(1), 25-40.
Johnson, S. D., & Aragon, S. R. (2002). An instructional strategy framework for online learning environment. In T. M. Egan & S. A. Lynham (Eds.), Proceedings of the Academy for Human Resource Development (pp. 1022-1029). Bowling Green, OH: AHRD.
Kannusmäki, O., Moreno, A., Myller, N., & Sutinen, E. (2004). What a novice wants: Students using program visualization in distance programming course. In A. Korhonen (Ed.), Proceedings of the Third Program Visualization Workshop (PVW 2004), Warwick, UK.
Karavirta, V., Korhonen, A., Malmi, L., & Stalnacke, K. (2004). MatrixPro - a tool for demonstrating data structures and algorithms ex tempore. Proceedings of ICALT 2004’, 892–893.
Kehoe, C. M., Stasko, J. T., & Talor, A. (2001). Rethinking the evaluation of algorithm animations as learning aids: an observational study, International Journal of Human Computer Studies, 54, 265–284.
Keller, J. M. (1987). Development and use of the ARCS model of instructional design. Journal of Instructional Development, 10(3), 2-10.
Kirsner, K. (1998). Implicit and explicit mental processes. Mahwah NJ: LEA.
Kolling, M., Quig, B., Patterson, A., & Rosenberg, J. (2003). The BlueJ system and its pedagogy. Journal of Computer Science Education, 13(4), 249-268.
Kölling, M., & Rosenberg, J. (2001). Guidelines for teaching object orientation with Java. Proceedings of 6th conference on Innovation and Technology in Computer Science Education (ITiCSE 2001), Canterbury, UK.
Lahtinen, E., Ala-Mutka, K., & Järvinen, H. (2005). A study of the difficulties of novice programmers. ACM SIGCSE Bulletin, 37(3), 14-18.
Lattu, M., Tarhio, J., & Meisalo, V. (2000). How a visualization tool can be used: Evaluating a tool in a research and development project. In 12th Workshop of the Psychology of Programming Interest Group (pp.19–32), Corenza, Italy.
Lee, M. J. W., Pradhan, S., & Daldarno, B. (2008). The effectiveness of screencasts and cognitive tools as scaffolding for novice object-oriented programmers. Journal of Computer Science Education, 7, 61-80.
Lowe, E., & Leyden, S. (2004). Instructional design for online learning, from http://www.wvu.edu/~itdc/resources/FacultyPreparation/Instdesign_onlinecourses.pdf.
Machanick, P. (2007). Teaching Java backwards. Computers & Education, 48(3), 396–408.
Mayer, R. E. (1997). Multimedia learning: Are we asking the right questions ? Educational Psychologist, 32, 1-19.
Mayer, R. E., & Anderson, R. B. (1991). Animations need narrations: An experimental test of a dual-coding hypothesis. Journal of Educational Psychology, 83(4), 484-490.
Mayer, R. E., & Sims, V. K. (1994). For whom is a picture worth a thousand words? Extensions of a dual-coding theory of multimedia learning. Journal of Educational Psychology, 86(3), 389-401.
Mannila, L., Peltomaki, M., & Salakoski, T. (2006). What about a simple language ? Analyzing the difficulties in learning to program. Computer Science Education, 16(3), 211–227.
McCauley, R., Fitzgeraldb, S., Lewandowskic, G., Murphyd, L., Simone, B., Thomasf, L., & Zanderg C. (2008). Debugging: A review of the literature from an educational perspective. Computer Science Education, 18(2), 67–92.
Moreno, A., & Joy, M.S. (2007). Jeliot 3 in a demanding educational setting. Electronic Notes in Theoretical Computer Science, 178, 51-59.
Moreno, R., & Mayer, R. E. (1999). Multimedia-supported metaphors for meaning making in mathematics. Cognition and Instruction, 17(3), 215-248.
Moreno, A., Myller, N., & Bednarik, R. (2005). Jeliot 3, An extensible tool for program visualization. 5th Annual Finnish / Baltic Sea Conference on Computer Science Education.
Moreno, A., Myller, N., Sutinen, E., & Ben-Ari, M. (2004). Visualizing Programs with Jeliot 3. Proceedings of Advanced Visual Interfaces, AVI 2004, 373–376.
Moreno, A., Myller, N., Sutinen, E., Lin, T., & Kinshuk (2007). Inductive reasoning and programming visualization, an experiment proposal. Electronic Notes in Theoretical Computer Science, 178, 61-68.
Moreno, A., Sutinen, E., Bednarik R., & Myller, N. (2007). Conflictive animations as engaging learning tools. In R. Lister & Simon (Eds.), Seventh Baltic Sea Conference on Computing Education Research (Koli Calling 2007), 88, 203–206.
Myller, N. (2004). The fundamental design issues of Jeliot 3. Unpublished master’s thesis, University of Joensuu, Department of Computer Science.
Myller, N., & Nuutinen, J. (2006). JeCo: Combining program visualization and story weaving. Informatics in Education, 5(2), 195–206.
Myller, N., Bednarik, R., & Moreno, A. (2007). Visualizing programs with Jeliot 3. Advanced Learning Technologies, 2007. ICALT 2007. Seventh IEEE International Conference on Advanced Learning Technologies, 505-506.
Myller, N., & Bednarik, R. (2006). Methodologies for studies of program visualization. Proceedings of the Methods, Materials and Tools for Programming Education Conference (MMT 2006), 37-42.
Pane, J. F., & Myers, B. A. (1996). Usability issues in the design of novice programming systems. School of Computer Science Technical Reports, Carnegie Mellon University. Retrieved May 20, 2010, from http://www.cs.cmu.edu/~pane/cmu-cs-96-132.html.
Papastergiou, M. (2009). Digital game-based learning in high school computer science education: Impact on educational effectiveness and student motivation. Computers & Education, 52, 1–12.
Pendergast, M. O. (2006). Teaching introductory programming to IS students: Java problems and pitfalls. Journal of Information Technology Education, 5, 491–515.
Price, B. A., Baecker, R. M., & Small, I. S., (1993). A principled taxonomy of software visualization. Journal of Visual Languages & Computing, 4(3), 211–266.
Pirolli, P. L., & Anderson, J. R. (1985). The role of learning from examples in the acquisition of recursive programming skills. Canadian Journal of Psychology, 39, 240-272.
Ragonis, N., & Ben-Ari, M. (2005). A long-term investigation of the comprehension of OOP concepts by novices. Computer Science Education, 15(3), 203–221.
Ramadhan, H. A. (2000). Programming by discovery. Journal of Computer Assisted Learning, 16, 83-93.
Rieber, L. (1997). Animation as a distractor to learning. International Journal of Instructional Media, 23(1), 53-57.
Roman, G. -C., & Cox, K. C. (1993). A taxonomy of program visualisation systems. IEEE Computer, 26(12), 11-24.
Sajaniemi, J., Ben-Ari, M., Byckling, P., Gerdt, P., & Kulikova, Y. (2006). Roles of variables in three programming paradigms. Computer Science Education, 16(4), 261-279.
Sicilia, M.A. (2006). Strategies for teaching object-oriented concepts with Java. Computer Science Education, 16(1), 1-18.
Shanmugasundaram, V., Juell, P., Groesbeck, G., & Makosky, M. (2006). Evaluation of Alice World as an introductory programming language. Proceedings of the ED-MEDIA 2006-World Conference on Educational Multimedia, Hypermedia & Telecommunications, 1976-1982.
Schollmeyer, M. (1996). Computer programming in high school vs. college. ACM SIGCSE Bulletin, 28(1), 378-382.
Soloway, E., & Spohrer, J. C. (1989). Studying the novice programmer. Hillsdale, NJ: Lawrence Erlbaum Associates.
Stasko, J., Badre, A., & Lewis, C. (1993). Do algorithm animations assist learning: An empirical study and analysis. Proceedings of the INTERCHI ’93 Conference on Human Factors in Computing Systems (pp. 61–66), Amsterdam, Netherlands,
Sweller, J., & Chanadler, P. (1994). Why some material is difficult to learn. Cognition and Instruction, 12(3), 185-233.
Tabachnick, B. G., & Fidell, L. S. (2006). Using Multivariate Statistics (5th ed.). Pearson International Edition: Allyn and Bacon.
Volet, S. E., & Lund, C. P. (1994). Meta cognitive instruction in introductory computer programming: A better explanatory construct for performance than traditional factors. Journal of Education Computing Research, 10(4), 297-328.
Yechiam, E. (2006). Why are macros not used? A brief review and an approach for improving training. Computers & Education, 46, 206-220.