研究生: |
薛敬怡 Hsieh Ching-Yi |
---|---|
論文名稱: |
二氧化鈰奈米管的製備與其催化反應之研究 Preparation, Characterization, and Catalytic Studies of Cerium Oxide Nanotubes |
指導教授: |
簡淑華
Chien, Shu-Hua 何嘉仁 Ho, Chia-Jen |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2010 |
畢業學年度: | 98 |
語文別: | 中文 |
論文頁數: | 113 |
中文關鍵詞: | 二氧化鈰奈米管 、二氧化鈰擔體鉑觸媒 、乙醇重組反應 、一氧化碳氧化反應 |
英文關鍵詞: | cerium oxide nanotubes, Pt/CeO2, ethanol reforming reaction, CO oxidation reaction |
論文種類: | 學術論文 |
相關次數: | 點閱:182 下載:3 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究係以不同條件製備型態均勻且具高表面積的二氧化鈰奈米管,探討因素包括水熱時間、水洗條件、水熱溫度、鹼液濃度及煅燒溫度。利用粉末X光繞射(XRD) 、掃描式電子顯微鏡(SEM)、穿透式電子顯微鏡(TEM)、氮氣等溫吸脫附為分析工具,探討觸媒組成與其結晶性、型態分佈及表面積。實驗顯示在鹼液濃度為0.6 M,於120 °C水熱24小時,水洗到pH = 9時可得到尺寸分佈一致,直徑約為146 nm,且其表面積最大(S.A. = 73 m2/g)的二氧化鈰奈米管。以450 °C在氧化環境下煅燒可得到具有結構缺陷可促進晶格氧的移動,且完整的二氧化鈰奈米管擔體,以此擔體所製備的鉑觸媒在一氧化碳氧化反應有不錯的活性。
為了解鉑觸媒之顆粒大小、氯含量與金屬氧化態對一氧化碳氧化反應能力之影響,改變製備方法、前處理與活化條件,實驗顯示以初濕含浸法製備的二氧化鈰奈米管擔體鉑觸媒之鉑顆粒最小(d = 3 nm),接續以還原水洗前處理之鉑觸媒的殘餘氯含量最少。為得到最佳一氧化碳氧化反應之表現,在還原氣流下以200 °C活化觸媒,可使二氧化鈰奈米管擔體鉑觸媒發揮最佳的活性表現(T50 = 76 °C)。
以原位光譜分析技術探討二氧化鈰奈米管擔體鉑觸媒之乙醇直接分解(Decomposition of Ethanol, ED)、部分氧化(Partial Oxidation of Ethanol, POE)與蒸氣重組(Steam Reforming of Ethanol, SRE)反應活性與機制。結果顯示在SRE反應中,二氧化鈰奈米管擔體鉑觸媒在室溫即可促進乙醇分解並且產生大量的氫氣,與商用二氧化鈰擔體鉑觸媒比較,其活性與氫氣產生量均有良好的表現。
Shape-controlled synthesis of CeO2 has drawn lots of attention in the decade. Especially tubular nanostructures have received significant interest since the unique physical and chemical properties. In the present work, CeO2 nanotubes (CeNT) have been fabricated via a hydrothermal method through controlling reaction time, acid washing conditions, reaction temperature, concentration of alkaline solution, and temperature of calcination. The properties of the CeO2 nanotubes were characterized by N2-isotherm sorption, X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM).
Three kinds of methods are chosen to prepare ceria-nanotubes supported platinum (Pt/CeNT) catalysts: incipient wetness impregnation, impregnation, and sodium borohydride reduction method. Application of catalysis over Pt/CeNT catalysts focus on the CO oxidation (evaluation in the micro flow-reaction) and ethanol reforming (studies with the in-situ spectra) reactions. In the CO oxidation reaction, the residual chlorine on the Pt/CeNT catalyst plays an important role in determining the catalytic activity.
Combination of in-situ FTIR and TPD-MS techniques to investigate the catalytic performance and mechanisms of ethanol reforming reactions (including decomposition, steam reforming, and partial oxidation of ethanol). The results show the activities of ethanol reforming over Pt/CeNT catalyst is better than the Pt/CeO2(C) catalyst.
[1] Jacobs, G.; Williams, L.; Graham, U.; Sparks, D.; Davis, B. H., Low-temperature water-gas shift: In-situ DRIFTS - Reaction study of a Pt/CeO2 catalyst for fuel cell reformer applications. Journal of Physical Chemistry B 2003, 107, (38), 10398-10404.
[2] Fu, X. Q.; Wang, C.; Yu, H. C.; Wang, Y. G.; Wang, T. H., Fast humidity sensors based on CeO2 nanowires. Nanotechnology 2007, 18, (14), 1-4.
[3] Ho, C. M.; Yu, J. C.; Kwong, T.; Mak, A. C.; Lai, S. Y., Morphology-controllable synthesis of mesoporous CeO2 nano- and microstructures. Chemistry of Materials 2005, 17, (17), 4514-4522.
[4] Inguanta, R.; Butera, M.; Sunseri, C.; Piazza, S., Fabrication of metal nano-structures using anodic alumina membranes grown in phosphoric acid solution: Tailoring template morphology. Applied Surface Science 2007, 253, (12), 5447-5456.
[5] Inguanta, R.; Sunseri, C.; Piazza, S., Photoelectrochemical characterization of Cu2O-Nanowire arrays electrodeposited into anodic alumina membranes. Electrochemical and Solid State Letters 2007, 10, (12), K63-K66.
[6] Lundin, S. T., Kirkothmer - Encyclopedia of Chemical Technology. Svensk Kemisk Tidskrift 1967, 79, (10), 596.
[7] Defaria, L. A.; Trasatti, S., The Point of Zero Charge of CeO2. Journal of Colloid and Interface Science 1994, 167, (2), 352-357.
[8] Barrow, R. F., Handbook on the Physics and Chemistry of Rare-Earths, Vol 5 - Gschneider,Ka, Eyring,L. Contemporary Physics 1984, 25, (2), 200-201.
[9] Kirk, N. B.; Wood, J. V., The Effect of the Calcination Process on the Crystallite Shape of Sol-Gel Cerium Oxide Used for Glass Polishing. Journal of Materials Science 1995, 30, (8), 2171-2175.
[10] Pushkarev, V. V.; Kovalchuk, V. I.; d'Itri, J. L., Probing defect sites on the CeO2 surface with dioxygen. Journal of Physical Chemistry B 2004, 108, (17), 5341-5348.
[11] Lundberg, M.; Skarman, B.; Wallenberg, L. R., Crystallography and porosity effects of CO conversion on mesoporous CeO2. Microporous and Mesoporous Materials 2004, 69, (3), 187-195.
[12] Skorodumova, N. V.; Simak, S. I.; Lundqvist, B. I.; Abrikosov, I. A.; Johansson, B., Quantum origin of the oxygen storage capability of ceria. Physical Review Letters 2002, 89, (16), 166601-166604.
13. Loschen, C.; Migani, A.; Bromley, S. T.; Illas, F.; Neyman, K. M., Density functional studies of model cerium oxide nanoparticles. Physical Chemistry Chemical Physics 2008, 10, (37), 5730-5738.
[14] Han, W. Q.; Wu, L. J.; Zhu, Y. M., Formation and oxidation state of CeO2-x nanotubes. Journal of the American Chemical Society 2005, 127, (37), 12814-12815.
[15] Tang, C. C.; Bando, Y.; Liu, B. D.; Golberg, D., Cerium oxide nanotubes prepared from cerium hydroxide nanotubes. Advanced Materials 2005, 17, (24), 3005-3009.
[16] Zhou, K. B.; Yang, Z. Q.; Yang, S., Highly reducible CeO2 nanotubes. Chemistry of Materials 2007, 19, (6), 1215-1217.
[17] Wu, X. S.; Kawi, S., Synthesis, Growth Mechanism, and Properties of Open-Hexagonal and Nanoporous-Wall Ceria Nanotubes Fabricated via Alkaline Hydrothermal Route. Crystal Growth & Design 2010, 10, (4), 1833-1841.
[18] Inguanta, R.; Piazza, S.; Sunseri, C., Template electrosynthesis of CeO2 nanotubes. Nanotechnology 2007, 18, (48), 1-6.
[19] Zhang, D. S.; Pan, C. S.; Shi, L. Y.; Huang, L.; Fang, J. H.; Fu, H. X., A highly reactive catalyst for CO oxidation: CeO2 nanotubes synthesized using carbon nanotubes as removable templates. Microporous and Mesoporous Materials 2009, 117, (1-2), 193-200.
[20] Pan, C. S.; Zhang, D. S.; Shi, L. Y.; Fang, J. H., Template-free synthesis, controlled conversion, and CO oxidation properties of CeO2 nanorods, nanotubes, nanowires, and nanocubes. European Journal of Inorganic Chemistry 2008, (15), 2429-2436.
[21] Pan, C. S.; Zhang, D. S.; Shi, L. Y., CTAB assisted hydrothermal synthesis, controlled conversion and CO oxidation properties of CeO2 nanoplates, nanotubes, and nanorods. Journal of Solid State Chemistry 2008, 181, (6), 1298-1306.
[22] Chen, G. Z.; Xu, C. X.; Song, X. Y.; Zhao, W.; Ding, Y.; Sun, S. X., Interface reaction route to two different kinds of CeO2 nanotubes. Inorganic Chemistry 2008, 47, (2), 723-728.
[23] Chen, G. Z.; Sun, S. X.; Sun, X.; Fan, W. L.; You, T., Formation of CeO2 Nanotubes from Ce(OH)CO3 Nanorods through Kirkendall Diffusion. Inorganic Chemistry 2009, 48, (4), 1334-1338.
[24] Huang, M.; Fabris, S., Role of surface peroxo and superoxo species in the low-temperature oxygen buffering of ceria: Density functional theory calculations. Physical Review B 2007, 75, (8), 081404-1.
[25] Huang, M.; Fabris, S., CO adsorption and oxidation on ceria surfaces from DFT+U calculations. Journal of Physical Chemistry C 2008, 112, (23), 8643-8648.
[26] 林聖欽,「以觸媒在富氫下行一氧化碳選擇性氧化」,清大碩士論文(2000).
[27] http://www.epa.gov/air/urbanair/co/what1.html
[28] http://www.meca.org/cs/root/resources/feature_article
[29] The 3-Way Catalytic Converter: a) Invention and Introduction into Commerce-Impacts and Results b) Barriers Negotiated California Air Resources Board Chairman Invitational Seminar Series
[30] 鄭耀宗,科學發展,367期,2003年7月
[31] Avgouropoulos, G.; Ioannides, T.; Papadopoulou, C.; Batista, J.; Hocevar, S.; Matralis, H. K., A comparative study of Pt/gamma-Al2O3, Au/alpha-Fe2O3 and CuO-CeO2 catalysts for the selective oxidation of carbon monoxide in excess hydrogen. Catalysis Today 2002, 75, (1-4), 157-167.
[32] Oh, S. H.; Sinkevitch, R. M., Carbon-Monoxide Removal from Hydrogen-Rich Fuel-Cell Feedstreams by Selective Catalytic-Oxidation. Journal of Catalysis 1993, 142, (1), 254-262.
[33] Mleczko, L.; Schweer, D.; Durjanova, Z.; Andorf, R.; Baerns, M., Reaction-Engineering Approaches to the Oxidative Coupling of Methane to C-2+ Hydrocarbons. Natural Gas Conversion Ii 1994, 81, 155-164.
[34] Kahlich, M. J.; Gasteiger, H. A.; Behm, R. J., Kinetics of the selective CO oxidation in H2-rich gas on Pt/Al2O3. Journal of Catalysis 1997, 171, (1), 93-105.
[35] Haruta, M.; Yamada, N.; Kobayashi, T.; Iijima, S., Gold Catalysts Prepared by Coprecipitation for Low-Temperature Oxidation of Hydrogen and of Carbon-Monoxide. Journal of Catalysis 1989, 115, (2), 301-309.
[36] Manoharan, R.; Goodenough, J. B., Electrodes without Platinum for a Methanol-Air Acid Fuel-Cell at Ambient-Temperatures. Proceedings of the 26th Intersociety Energy Conversion Engineering Conference, Vols 1-6 1991, C552-C557, 3199.
[37] Trovarelli, A., Catalytic properties of ceria and CeO2-containing materials. Catalysis Reviews-Science and Engineering 1996, 38, (4), 439-520.
[38] Bernal, S.; Calvino, J. J.; Cauqui, M. A.; Gatica, J. M.; Larese, C.; Omil, J. A. P.; Pintado, J. M., Some recent results on metal/support interaction effects in NM/CeO2 (NM : noble metal) catalysts. Catalysis Today 1999, 50, (2), 175-206.
[39] Bera, P.; Gayen, A.; Hegde, M. S.; Lalla, N. P.; Spadaro, L.; Frusteri, F.; Arena, F., Promoting effect of CeO2 in combustion synthesized Pt/CeO2 catalyst for CO oxidation. Journal of Physical Chemistry B 2003, 107, (25), 6122-6130.
[40] Mergler, Y. J.; vanAalst, A.; vanDelft, J.; Nieuwenhuys, B. E., CO oxidation over promoted Pt catalysts. Applied Catalysis B-Environmental 1996, 10, (4), 245-261.
[41] Zarraga-Colina, J.; Nix, R. M., Fabrication of model Pt-ceria catalysts and an analysis of their performance for CO oxidation. Surface Science 2006, 600, (15), 3058-3071.
[42] Oran, U.; Uner, D., Mechanisms of CO oxidation reaction and effect of chlorine ions on the CO oxidation reaction over Pt/CeO2 and Pt/CeO2/gamma-Al2O3 catalysts. Applied Catalysis B-Environmental 2004, 54, (3), 183-191.
[43] Abdelsayed, V.; Aljarash, A.; El-Shall, M. S.; Al Othman, Z. A.; Alghamdi, A. H., Microwave Synthesis of Bimetallic Nanoalloys and CO Oxidation on Ceria-Supported Nanoalloys. Chemistry of Materials 2009, 21, (13), 2825-2834.
[44] Osterlund, L.; Kielbassa, S.; Werdinius, C.; Kasemo, B., Reactivity of Pt/ceria and Pt/alumina planar model catalysts prepared by colloidal lithography. Journal of Catalysis 2003, 215, (1), 94-107.
[45] Bera, P.; Patil, K. C.; Jayaram, V.; Subbanna, G. N.; Hegde, M. S., Ionic dispersion of Pt and Pd on CeO2 by combustion method: Effect of metal-ceria interaction on catalytic activities for NO reduction and CO and hydrocarbon oxidation. Journal of Catalysis 2000, 196, (2), 293-301.
[46] Torncrona, A.; Skoglundh, M.; Thormahlen, P.; Fridell, E.; Jobson, E., Low temperature catalytic activity of cobalt oxide and ceria promoted Pt and Pd: influence of pretreatment and gas composition. Applied Catalysis B-Environmental 1997, 14, (1-2), 131-145.
[47] Kumar, N.; King, T. S.; Vigil, R. D., A portal model for structure sensitive hydrogen adsorption on Ru-Ag/SiO2 catalysts. Chemical Engineering Science 2000, 55, (21), 4973-4979.
[48] Holmgren, A.; Andersson, B.; Duprez, D., Interactions of CO with Pt/ceria catalysts. Applied Catalysis B-Environmental 1999, 22, (3), 215-230.
[49] Holmgren, A.; Azarnoush, F.; Fridell, E., Influence of pre-treatment on the low-temperature activity of Pt/ceria. Applied Catalysis B-Environmental 1999, 22, (1), 49-61.
[50] Das, D.; Veziroglu, T. N., Hydrogen production by biological processes: a survey of literature. International Journal of Hydrogen Energy 2001, 26, (1), 13-28.
[51] Takezawa, N.; Iwasa, N., Steam reforming and dehydrogenation of methanol: Difference in the catalytic functions of copper and group VIII metals. Catalysis Today 1997, 36, (1), 45-56.
[52] Reitz, T. L.; Lee, P. L.; Czaplewski, K. F.; Lang, J. C.; Popp, K. E.; Kung, H. H., Time-resolved XANES investigation of CuO/ZnO in the oxidative methanol reforming reaction. Journal of Catalysis 2001, 199, (2), 193-201.
[53] Velu, S.; Suzuki, K.; Kapoor, M. P.; Ohashi, F.; Osaki, T., Selective production of hydrogen for fuel cells via oxidative steam reforming of methanol over CuZnAl(Zr)-oxide catalysts. Applied Catalysis a-General 2001, 213, (1), 47-63.
[54] Takahashi, T.; Inoue, M.; Kai, T., Effect of metal composition on hydrogen selectivity in steam reforming of methanol over catalysts prepared from amorphous alloys. Applied Catalysis a-General 2001, 218, (1-2), 189-195.
[55] Biswas, P.; Kunzru, D., Oxidative steam reforming of ethanol over Ni/CeO2-ZrO2 catalyst. Chemical Engineering Journal 2008, 136, (1), 41-49.
[56] 呂卦南,「紅外線光譜研究一氧化氮在Pd/TiO2觸媒上之吸附與還原反應」,康寧學報,Vol. 7, pp.305-325, 2005。
[57] Yee, A.; Morrison, S. J.; Idriss, H., A study of the reactions of ethanol on CeO2 and Pd/CeO2 by steady state reactions, temperature programmed desorption, and in situ FT-IR. Journal of Catalysis 1999, 186, (2), 279-295.
[58] Mattos, L. V.; Noronha, E., Hydrogen production for fuel cell applications by ethanol partial oxidation on Pt/CeO2 catalysts: the effect of the reaction conditions and reaction mechanism. Journal of Catalysis 2005, 233, (2), 453-463.
[59] de Lima, S. M.; Silva, A. M.; da Cruz, I. O.; Jacobs, G.; Davis, B. H.; Mattos, L. V.; Noronha, F. B., H2 production through steam reforming of ethanol over Pt/ZrO2, Pt/CeO2 and Pt/CeZrO2 catalysts. Catalysis Today 2008, 138, (3-4), 162-168.
[60] de Lima, S. M.; da Cruz, I. O.; Jacobs, G.; Davis, B. H.; Mattos, L. V.; Noronha, F. B., Steam reforming, partial oxidation, and oxidative steam reforming of ethanol over Pt/CeZrO2 catalyst. Journal of Catalysis 2008, 257, (2), 356-368.
[61] de Lima, S. M.; da Silva, A. M.; Jacobs, G.; Davis, B. H.; Mattos, L. V.; Noronha, F. B., New approaches to improving catalyst stability over Pt/ceria during ethanol steam reforming: Sn addition and CO2 co-feeding. Applied Catalysis B-Environmental 2010, 96, (3-4), 387-398.
[62] Yee, A.; Morrison, S. J.; Idriss, H., A study of ethanol reactions over Pt/CeO2 by temperature-programmed desorption and in situ FT-IR spectroscopy: Evidence of benzene formation. Journal of Catalysis 2000, 191, (1), 30-45.
[63] Sheng, P. Y.; Chiu, W. W.; Yee, A.; Morrison, S. J.; Idriss, H., Hydrogen production from ethanol over bimetallic Rh-M/CeO2 (M = Pd or Pt). Catalysis Today 2007, 129, (3-4), 313-321.
[64] Sing, K. S. W.; Everett, D. H.; Haul, R. A. W.; Moscou, L.; Pierotti, R. A.; Rouquerol, J.; Siemieniewska, T., Reporting Physisorption Data for Gas Solid Systems with Special Reference to the Determination of Surface-Area and Porosity (Recommendations 1984). Pure and Applied Chemistry 1985, 57, (4), 603-619.
[65] Chen, S. F.; Yu, S. H.; Yu, B.; Ren, L.; Yao, W. T.; Colfen, H., Solvent effect on mineral modification: Selective synthesis of cerium compounds by a facile solution route. Chemistry-a European Journal 2004, 10, (12), 3050-3058
[66] Sinfelt, J. H., Supported Bimetallic-Cluster Catalysts. Journal of Catalysis 1973, 29, (2), 308-315.
[67] Chen, Y. Z.; Shao, Z. P.; Xu, N. P., Ethanol steam reforming over Pt catalysts supported on CexZr1-xO2 prepared via a glycine nitrate process. Energy & Fuels 2008, 22, (3), 1873-1879.