簡易檢索 / 詳目顯示

研究生: 孫天祥
Tien-Hsiang Sun
論文名稱: 臺灣宜蘭清水地熱區之應力狀態研究
Study of Stress State around the Chinshui Geothermal District of Ilan Area, Taiwan
指導教授: 葉恩肇
Yeh, En-Chao
學位類別: 碩士
Master
系所名稱: 地球科學系
Department of Earth Sciences
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 66
中文關鍵詞: 宜蘭清水應力反演非彈性應變回復法現地應力
英文關鍵詞: Chinshui, Ilan, Stress Inversion, Anelastic Strain Recovery, In-situ Stress
論文種類: 學術論文
相關次數: 點閱:602下載:52
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 為了減緩對石化燃料過度的依賴以及減少二氧化碳的排放,開發新興能源不僅僅是最好的解決辦法,同時也是國際間的趨勢。在各式各樣新興能源當中,地熱發電是個發展較完備的技術。數十年來,宜蘭清水地熱地區以其豐富的地熱資源成名已久。一些初步的調查顯示在宜蘭清水的下方有著龐大的熱儲集層。因此,倘若地熱發電廠能在此處商轉,將對政府能源政策帶來正面的助益。

    了解地層中導水裂隙是地熱發電廠以及增強型地熱系統(EGS)建構中關鍵的一環。而評估古應力與現地應力則能幫助我們判別應力場變化的狀態。有了現地應力與裂隙的資料之後,便可知道哪些裂隙會成為導水裂隙。清水地熱地區坐落於臺灣東北角,屬脊梁山脈西部板岩帶。此處位於板塊碰撞轉換到弧後張裂的過渡帶,應力狀態變化十分複雜,因此本研究將探討宜蘭清水地區之應力狀態。

    我們使用地表斷層擦痕反演法以期估計應力演化狀態,此方法顯示出宜蘭清水一帶曾經歷至少三期不同的應力場。另一方面,我們透過IC-21號井所取得之岩心進行非彈性應變回復法(ASR),以評估現地應力,其結果顯示:此區域正受到東北-西南向的擠壓與西北-東南向的拉張,呈現一走向滑移應力場,且此處應力比值極低,容易發生σ2與σ3互換之現象。此一結果與斷層擦痕反演法之最新一期結果一致,因此此結果足以代表宜蘭清水地熱地區之現地應力。

    In order to relieve the dependence on fossil fuels and reduce the production of carbonate-dioxide, the development of neo-energy is not only one of the best ways to work out but also the latest trends in the world. Among all the neo-energy sources, geothermal power plant is a well-developed technique. Chinshui geothermal district, Ilan, Taiwan has been known as one of famous geothermal districts for decades. Some preliminary research shows that there is a huge geothermal reservoir right below Chinshui, Ilan. It would be a great help to the energy policy if the efficient geothermal power plant could be set up here.

    Understanding fluid conduit fractures is the key to develop geothermal power plants and further Enhanced Geothermal System (EGS). Assessing stress-state (both paleo & in-situ stress) helps out evaluating history evolution of stress states. Base on in-situ stress state in addition to fracture orientation, the passage or barrier of various fractures can be determined. Chinshui, Ilan locates in the western slate belt of Backbone Range, NE Taiwan. The variation of stress state here is quite complicated since the complex tectonic history of NE Taiwan resulted from collision to back-arc extension. In this work, multi methods were applied to find out the stress states around Chinshui, Ilan.

    In order to evaluate paleo-stress states, analysis of heterogeneous fault-slipdata such as slickenside and quartz and calcite steps collected from outcrop along 10 km-long Chinshui area. Results show that at least three stages of stress state can be determined. On the other side, to know in-situ stress state, Anelastic Strain Recovery (ASR) method, a core-based method, was applied on the core retrieved form a latest drilling bore-hole of IC-21. Results show that NE-compression and NW-extension of strike-slip faulting stress regime with a low stress ratio. This result consisted with the youngest stage of stress state inferred from fault-slip analysis, impling that this strike-slip stress regime is the in-situ stress throughout the Chinshui geothermal district, Ilan.

    口試委員會審定書 # 誌謝 I 中文摘要 II ABSTRACT III 目錄 IV 圖目錄 VI 表目錄 VIII 第一章 前言 1 1.1研究動機與目的 1 1.2研究內容簡介 2 第二章 研究區域背景 5 2.1 地質概況 5 2.2區域構造 8 2.2.1 GPS地表測量 8 2.2.2 震源機制解 12 第三章 研究方法 19 3.1地表斷層擦痕應力反演 19 3.1.1原理 19 3.1.2資料來源 21 3.1.3程式運算 21 3.2 非彈性應變回復法 25 3.2.1 原理 25 3.2.2 非彈性應變回復量之量測設備 29 3.2.3 非彈性應變回復量之量測實驗步驟 32 3.2.4 溫度效應 36 3.2.5 非彈性應變之計算 36 3.2.6 淨水壓值之估計 37 3.2.7 應力值之解算 37 3.2.8 孔隙水壓值之估算 38 第四章 研究成果與分析 40 4.1.斷層擦痕應力場反演 40 4.1.1 MIM結果 41 4.1.2 T-TECTO 3.0 分期結果 43 4.2 非彈性應變回復法(ASR)結果 45 第五章 討論 54 5.1 現地應力主軸方向 54 5.2 不同樣本非彈性應變回復量之差異與比較 56 5.3 孔隙水壓效應 57 5.4 移孔隙水壓後的應力值 60 5.5 現地應力與深度變化關係 62 第六章 結論 64 參考文獻 65

    Angelier, J. (1994). Fault Slip Analysis and paleostress reconstruction. In P. L. Hancock (Ed.), Continental Deformation. New York: Pergamon Press.
    Angelier, J., Bergerat, F., Hao, T. C., Wen, S. J., & Chia, Y. L. (1990). Paleostress Analysis as a Key to Margin Extension - the Penghu Islands, South China Sea. Tectonophysics, 183(1-4), 161-176. doi: Doi 10.1016/0040-1951(90)90414-4
    Brereton, N. R., Chroston, P. N., & Evans, C. J. (1995). Pore Pressure as an Explanation of Complex Anelastic Strain Recovery Results. Rock Mechanics and Rock Engineering, 28(1), 59-66. doi: Doi 10.1007/Bf01024773
    Hsu, Y. J., Yu, S. B., Simons, M., Kuo, L. C., & Chen, H. Y. (2009). Interseismic crustal deformation in the Taiwan plate boundary zone revealed by GPS observations, seismicity, and earthquake focal mechanisms. Tectonophysics, 479(1-2), 4-18. doi: DOI 10.1016/j.tecto.2008.11.016
    Huang, H.-H., Shyu, J. B. H., Wu, Y.-M., Chang, C.-H., & Chen, Y.-G. (2012). Seismotectonics of northeastern Taiwan: Kinematics of the transition from waning collision to subduction and postcollisional extension. Journal of Geophysical Research, 117(B1). doi: 10.1029/2011jb008852
    Liang, W. T., Lee, J. C., & Kuo, B. Y. (2005). Left-Lateral Strike-Slip Faulting in Ilan Lateral Extrusion at the Transition between Taiwan Mountain Range and the Okinawa Trough. Geodynamics and Enviromental in Asia International Conference and 5th Taiwan-France Earth Science Symposium.
    Lin, W. R., Kwasniewski, M., Imamura, T., & Matsuki, K. (2006). Determination of three-dimensional in situ stresses from anelastic strain recovery measurement of cores at great depth. Tectonophysics, 426(1-2), 221-238. doi: DOI 10.1016/j.tecto.2006.02.019
    Matsuki, K. (1991). Three-dimentional In-situ stress measurement with anelastic starin recovery of a rock core. International congress on Rock Mechanics, 1, 557-560.
    Matsuki, K. (2008). Anelastic strain recovery compliance of rocks and its application to in situ stress measurement. International Journal of Rock Mechanics and Mining Sciences, 45(6), 952-965. doi: DOI 10.1016/j.ijrmms.2007.10.005
    Voight. (1968). Determination of the virgin state of stress in the vicinity of a borehole from measurements of a partial anelastic strain tensor in drill cores. Rock Mechanics and Engineering geology, 6/4, 201-215.
    Warpinski, N. R., & Teufel, L. W. (1989). A Viscoelastic Constitutive Model for Determining In-Situ Stress Magnitudes From Anelastic Strain Recovery of Core (includes associated papers 19042 and 19892 ). SPE Production Engineering, 4(3), 272-280. doi: 10.2118/15368-pa
    Yamaji, A. (2000). The multiple inverse method: a new technique to separate stresses from heterogeneous fault-slip data. Journal of Structural Geology, 22(4), 441-452. doi: Doi 10.1016/S0191-8141(99)00163-7
    Žalohar, J., & Vrabec, M. (2007). Paleostress analysis of heterogeneous fault-slip data: The Gauss method. Journal of Structural Geology, 29(11), 1798-1810. doi: 10.1016/j.jsg.2007.06.009
    朱傚祖. (1991). 玉山地區逆衝斷層構造之研究. 中國地質學會會刊, 34(4), 199-232.
    吳永助. (1976). 清水土場地熱區及其外圍之地質. 礦業技術, 14(12), 484-489.
    林啟文, & 林偉雄. (1995). 三星圖幅暨說明書. In 經濟部中央地質調查所 (Ed.), (Vol. 15, pp. 56).
    邱詠恬, 景國恩, 侯進雄, 胡植慶, & 饒瑞鈞. (2008). 由2002-2006年之GPS觀測資料探討宜蘭平原之地殼變形. 經濟部中央地質調查所特刊, 20, 111-124.
    曾長生. (1987). 宜蘭縣清水及土場區地質及地熱產狀. 台灣石油地質, 第15號, 第11-23頁.
    黃信樺. (2007). 台灣東北地區的地震構造:由碰撞末期轉變為隱沒拉張之構造特性. (Master ), 國立臺灣大學.

    QR CODE