簡易檢索 / 詳目顯示

研究生: 游晴嵐
Yiu, Cing-Lan
論文名稱: 透過奈米探針親和質譜法探索消化道癌中血清澱粉樣蛋白A的變異模式
Exploring Serum Amyloid A in Gastrointestinal Cancer by Nanoprobe-based Affinity Mass Spectrometry
指導教授: 陳玉如
Chen, Yu-Ju
陳頌方
Chen, Sung-Fang
口試委員: 陳玉如
Chen, Yu-Ju
陳頌方
Chen, Sung-Fang
吳登強
Wu, Deng-Chyang
口試日期: 2024/07/03
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2024
畢業學年度: 112
語文別: 英文
論文頁數: 92
中文關鍵詞: 消化道癌症血清澱粉A異構體質譜癌症細胞
英文關鍵詞: Gastrointestinal (GI) cancers, Serum amyloid A (SAA), Variants, Mass spectrometry, Cancer cell line
DOI URL: http://doi.org/10.6345/NTNU202401140
論文種類: 學術論文
相關次數: 點閱:83下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 血清澱粉樣蛋白A,是一種急性期蛋白,在許多文獻中都曾發表過SAA在多種癌症中皆有出現過度表達的情形。在我們先前的研究中,我們應用基於奈米探針的親和質譜法 (NBAMS) 來識別 24 個 SAA 變異,該變異模式可已用於區分胃癌 (GC) 患者與胃病和健康個體。然而,癌症中異質SAA變異的來源仍不清楚。以往的研究認為肝臟是SAA的主要來源。然而,我們對於SAA變異模式是否具有癌症特異性感到好奇。為了探討SAA的分泌機制以其在不同癌症類型的特異性,我們分析了患者的血清、正常以及腫瘤組織以及細胞模型中的SAA變異模式,後者可能可以用於人體內SAA的分泌和修飾的模擬。本實驗透過半自動奈米探針親和進行SAA的純化,並透過基質輔助雷射脫附游離飛行時間式質譜儀 (MALDI-TOF MS) 進行分析。在血清中,SAA 變異模式在 GC 的早期和晚期癌症中表現出差異。此外,SAA模式在GC(n=186)和肝癌(HCC)(n=38)中也顯示出不同的頻率。而肝癌細胞與胃癌細胞利用細胞激素刺激進行培養。為了驗證肝癌以及胃癌患者中的SAA分泌機制,將細胞模型中的SAA變異模式與癌症患者進行比較。肝癌腫瘤組織中,SAA的變異模式與肝癌細胞一致。GC 細胞系中也未檢測到SAA,只有在與肝癌細胞共培養後才得以發現。這表明肝臟和肝外 SAA 可能是不同的。最後我們也發現了活化血清中本身的蛋白酶,會增加N端截斷的SAA,這表示血清中的蛋白酶可能導致SAA的N端截短。我們的研究揭示了胃癌 (GC) 和肝癌 (HCC) 中血清澱粉樣蛋白 A (SAA) 具有不同模式,顯示癌症特異性。我們也發現SAA的分泌和修飾受到肝臟和肝外來源的影響,血清蛋白酶也可能導致其變異的原因。

    Serum amyloid A (SAA), an acute phase protein, has been reported to be overexpressed in many cancers. In our previous study, we applied nanoprobe-based affinity mass spectrometry (NBAMS) to identify 24 SAA variants, which pattern distinguished gastric cancer (GC) patients from gastric disease and healthy individuals. However, the source of the heterogeneous SAA variants in cancer is still not understood. Previous literature reported that liver is the major source to secrete SAA. However, it is intriguing if the SAA variant pattern has cancer specificity. To explore the secretion mechanism of SAA and specificity towards different cancer types, we characterized the SAA variant pattern in patient serum, paired normal and tumor tissues, and cell line models; the latter may mimic the SAA secretion and modification in human body. The SAA was purified by semi-automated nanoprobe-based affinity purification and analyzed by matrix-assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF MS). In serum, the SAA variant patterns show difference in early-stage and advanced-stage cancer in GC. In addition, the SAA pattern also shows different frequency in GC (n=185) and hepatocellular carcinoma (HCC) (N=38) Accordingly, the SAA in HCC cell lines (HepG2, Hep3B and Huh7) and GC cell lines (HGC27, N87 and AGS) simulated by inflammatory molecules (IL-6, IL-1β, TNFα). To clarify the SAA secretion mechanism in HCC and GC patients, the SAA variant patterns in cell lines were compared with the tissues in cancer patients. In HCC, the SAA variant patterns tumor tissues were consistent with the HCC cell lines. However, SAA was not detected from GC cell lines, even with cytokines treatment, and was only found after co-culture with HCC cell line;. The hepatic and extra-hepatic SAA are possibly not homologous. Lastly, activated the proteases in serum, increased N-terminal truncated SAA, which suggests that the proteases in serum likely caused the N-terminal truncation of SAA. Our study revealed distinct patterns of serum amyloid A (SAA) variants in gastric cancer (GC) and hepatocellular carcinoma (HCC), suggesting cancer-specific differences. We found that SAA secretion and modification are influenced by both hepatic and extra-hepatic sources, with serum proteases likely contributing to their variation.
    Keywords: Gastrointestinal (GI) cancers / Serum amyloid A (SAA) / Variants / Isoforms/ Mass spectrometry / Cancer cell line

    中文摘要 i ABSTRACT ii CONTENTS iii List of Tables v List of Figures vi Chapter 1. Introduction 1 1.1 Gastrointestinal cancer statistics in Taiwan 1 1.2 Current Diagnosis and Test of Gastrointestinal Cancer 1 1.3 Serum Amyloid A as a Cancer Associated Biomarker 4 1.4 Nanoprobe-based Affinity Mass Spectrometry for SAA detection 5 1.5 The Role of Serum Amyloid A in Inflammation and Cancer 6 1.6 Serum Amyloid A has Various Proteoforms 8 1.7 Objectives 9 Chapter 2. Method and Materials 11 2.1 Chemicals and Materials 11 2.2 Cell Culture and Co-culture 12 2.2.1 Cell Culture and Lysis (provided by Dr. Deng-Chyang Wu from KMUH) 12 2.2.2 Co-culture Experiment (provided by Dr. Deng-Chyang Wu from KMUH) 13 2.2.3 SDS-PAGE and Western Blot 14 2.2.4 Preconcentration of Cell and Tissue Lysates 14 2.3 Nanoprobe-Based Affinity Mass Spectrometry (NBAMS) 15 2.3.1 SAA Purification by Anti-SAA@MNP 15 2.3.2 Matrix-Assisted Laser Desorption/Ionization Time of Flight Mass Spectrometry 16 2.4 Study of SAA Truncation Form by Protease Test 16 2.4.1 Testing Effect of Serum Protease 16 2.4.2 Validation of SAA Truncation by Protease Inhibitor 16 2.5 Heatmap Clustering of Serum SAA Profile 17 Chapter 3. Results and Discussion 18 3.1 SAA analysis by NBAMS in serum and lysates 18 3.2 SAA variant patterns in Serum 19 3.2.1 SAA variant patterns in serum from gastric cancer 19 3.2.2 SAA variant patterns in serum from Hepatocellular carcinoma 20 3.2.3 Heterogeneity of SAA variant patterns between liver cancer and gastric cancer 20 3.3 SAA variant patterns in tissue 21 3.3.1 Hepatocellular carcinoma patients 21 3.3.2 Gastric cancer patients 22 3.4 SAA secretion model cell line 23 3.4.1 Liver cancer 23 3.4.2 Gastric cancer 23 3.5 co-culture experiment of liver and gastric cell line 24 3.5.1 gastric cancer cell line after co-culture 24 3.5.2 Liver cancer cell lines after co-culture 24 3.6 Protease test in serum samples 25 3.6.1 Preliminary protease activity tests in serum 25 3.6.2 Time-dependent protease test 27 3.6.3 Inhibition of protease activity 27 3.6.4 Intact/ truncated SAA from different stage of gastric cancer 28 3.7 Discussion 29 Chapter 4. Conclusion and future perspectives 33 Tables 35 Figures 51 References 79 Appendix 88

    (1) Ahlawat, R.; Hoilat, G. J.; Ross, A. B. Esophagogastroduodenoscopy. In StatPearls, StatPearls Publishing Copyright © 2024, StatPearls Publishing LLC., 2024.
    (2) Graser, A.; Stieber, P.; Nagel, D.; Schafer, C.; Horst, D.; Becker, C. R.; Nikolaou, K.; Lottes, A.; Geisbusch, S.; Kramer, H.; et al. Comparison of CT colonography, colonoscopy, sigmoidoscopy and faecal occult blood tests for the detection of advanced adenoma in an average risk population. Gut 2009, 58 (2), 241-248. DOI: 10.1136/gut.2008.156448.
    (3) Lin, J. S.; Perdue, L. A.; Henrikson, N. B.; Bean, S. I.; Blasi, P. R. Screening for Colorectal Cancer: Updated Evidence Report and Systematic Review for the US Preventive Services Task Force. JAMA 2021, 325 (19), 1978-1998. DOI: 10.1001/jama.2021.4417 (acccessed 6/25/2022).
    (4) Ko, C. W.; Dominitz, J. A.; Green, P.; Kreuter, W.; Baldwin, L.-M. Specialty Differences in Polyp Detection, Removal, and Biopsy during Colonoscopy. The American Journal of Medicine 2010, 123 (6), 528-535. DOI: https://doi.org/10.1016/j.amjmed.2010.01.016.
    (5) Omar, E. Current concepts and future of noninvasive procedures for diagnosing oral squamous cell carcinoma--a systematic review. Head Face Med 2015, 11, 6. DOI: 10.1186/s13005-015-0063-z.
    (6) Heidemann, J.; Schilling, M. K.; Schmassmann, A.; Maurer, C. A.; Büchler, M. W. Accuracy of endoscopic ultrasonography in preoperative staging of esophageal carcinoma. Digestive surgery 2000, 17 (3), 219-224.
    (7) Krill, T.; Baliss, M.; Roark, R.; Sydor, M.; Samuel, R.; Zaibaq, J.; Guturu, P.; Parupudi, S. Accuracy of endoscopic ultrasound in esophageal cancer staging. J Thorac Dis 2019, 11 (Suppl 12), S1602-S1609. DOI: 10.21037/jtd.2019.06.50.
    (8) Rösch, T. Endosonographic staging of esophageal cancer: a review of literature results. Gastrointestinal endoscopy clinics of North America 1995, 5 (3), 537-547.
    (9) Trivedi, P. J.; Braden, B. Indications, stains and techniques in chromoendoscopy. QJM 2013, 106 (2), 117-131. DOI: 10.1093/qjmed/hcs186.
    (10) Yao, K. The endoscopic diagnosis of early gastric cancer. Annals of Gastroenterology 2013, 26, 11-22. DOI: 10.1016/s0016-5107(84)72334-0.
    (11) Thomas-Gibson, S.; Haycock, A. 2 - Colonoscopy and flexible sigmoidoscopy. In Colorectal Surgery (Fifth Edition), Phillips, R. K. S., Clark, S. Eds.; W.B. Saunders, 2014; pp 17-31.
    (12) Yao, K. Clinical Application of Magnifying Endoscopy with Narrow-Band Imaging in the Stomach. Clin Endosc 2015, 48 (6), 481-490. DOI: 10.5946/ce.2015.48.6.481.
    (13) Romero-Mosquera, B.; Martínez-Turnes, A.; Hernández, V. Chapter 16 - Endoscopic diagnosis of preneoplastic and neoplastic lesions. In Foundations of Colorectal Cancer, Sierra, A. P. Ed.; Academic Press, 2022; pp 171-179.
    (14) Sparchez, Z.; Mocan, T. Contemporary role of liver biopsy in hepatocellular carcinoma. World J Hepatol 2018, 10 (7), 452-461. DOI: 10.4254/wjh.v10.i7.452.
    (15) Zhang, L.; Cai, Z.; Rodriguez, J.; Zhang, S.; Thomas, J.; Zhu, H. Fine needle biopsy of malignant tumors of the liver: a retrospective study of 624 cases from a single institution experience. Diagnostic Pathology 2020, 15 (1), 1-9.
    (16) Liu, Y.; Zheng, D.; Liu, J. J.; Cui, J. X.; Xi, H. Q.; Zhang, K. C.; Huang, X. H.; Wei, B.; Wang, X. X.; Xu, B. X.; et al. Comparing PET/MRI with PET/CT for Pretreatment Staging of Gastric Cancer. Gastroenterol Res Pract 2019, 2019, 9564627. DOI: 10.1155/2019/9564627.
    (17) Cerfolio, R. J.; Ojha, B.; Bryant, A. S.; Raghuveer, V.; Mountz, J. M.; Bartolucci, A. A. The accuracy of integrated PET-CT compared with dedicated PET alone for the staging of patients with nonsmall cell lung cancer. Ann Thorac Surg 2004, 78 (3), 1017-1023; discussion 1017-1023. DOI: 10.1016/j.athoracsur.2004.02.067.
    (18) Kato, H.; Miyazaki, T.; Nakajima, M.; Takita, J.; Kimura, H.; Faried, A.; Sohda, M.; Fukai, Y.; Masuda, N.; Fukuchi, M.; et al. The incremental effect of positron emission tomography on diagnostic accuracy in the initial staging of esophageal carcinoma. Cancer 2005, 103 (1), 148-156. DOI: 10.1002/cncr.20724.
    (19) Malaj, A.; Bilaj, F.; Shahini, A.; Miraka, M. CT/MRI accuracy in detecting and determining preoperative stage of gastric adenocarcinoma in Albania. Contemp Oncol (Pozn) 2017, 21 (2), 168-173. DOI: 10.5114/wo.2017.68626.
    (20) Nae, A.; O'Leary, G.; Feeley, L.; Fives, C.; Fitzgerald, B.; Chiriac, E.; Sheahan, P. Utility of CT and MRI in assessment of mandibular involvement in oral cavity cancer. World J Otorhinolaryngol Head Neck Surg 2019, 5 (2), 71-75. DOI: 10.1016/j.wjorl.2019.02.001.
    (21) Ng, S. H.; Yen, T. C.; Liao, C. T.; Chang, J. T.; Chan, S. C.; Ko, S. F.; Wang, H. M.; Wong, H. F. 18F-FDG PET and CT/MRI in oral cavity squamous cell carcinoma: a prospective study of 124 patients with histologic correlation. J Nucl Med 2005, 46 (7), 1136-1143. From NLM.
    (22) Veit-Haibach, P.; Kuehle, C.; Beyer, T.; Stergar, H.; Kuehl, H.; Schmidt, J.; Börsch, G.; Dahmen, G.; Barkhausen, J.; Bockisch, A.; et al. Diagnostic Accuracy of Colorectal Cancer Staging With Whole-Body PET/CT Colonography. JAMA : the journal of the American Medical Association 2007, 296, 2590-2600. DOI: 10.1001/jama.296.21.2590.
    (23) Choi, J.-Y.; Lee, J.-M.; Sirlin, C. CT and MR Imaging Diagnosis and Staging of Hepatocellular Carcinoma. Part II. Extracellular Agents, Hepatobiliary Agents, and Ancillary Imaging Features. Radiology 2014, 273, 30-50. DOI: 10.1148/radiol.14132362.
    (24) Sultan, R.; Haider, Z.; Chawla, T. Diagnostic accuracy of CT scan in staging resectable esophageal cancer. Journal of the Pakistan Medical Association 2016, 66, 90-92.
    (25) Johnson, C.; Herman, B.; Chen, M.-H.; Toledano, A.; Heiken, J.; Dachman, A.; Kuo, M.; Menias, C.; Siewert, B.; Cheema, J.; et al. The National CT Colonography Trial: Assessment of Accuracy in Participants 65 Years of Age and Older. Radiology 2012, 263, 401-408. DOI: 10.1148/radiol.12102177.
    (26) Roșu, M. C.; Mihnea, P. D.; Ardelean, A.; Moldovan, S. D.; Popețiu, R. O.; Totolici, B. D. Clinical significance of tumor necrosis factor-alpha and carcinoembryonic antigen in gastric cancer. J Med Life 2022, 15 (1), 4-6. DOI: 10.25122/jml-2020-0098 From NLM.
    (27) Pian, G.; Shin, J. S.; Yoon, S.; Oh, S. Y. Prognostic Reappraisal of Postoperative Carcinoembryonic Antigen in T1-2N0 Colorectal Cancer. Anticancer Res 2021, 41 (2), 1101-1110. DOI: 10.21873/anticanres.14868 From NLM.
    (28) Henry, N. L.; Hayes, D. F. Cancer biomarkers. Molecular oncology 2012, 6 (2), 140-146.
    (29) Baskiran, D. Y.; Sarigoz, T.; Baskiran, A.; Yilmaz, S. The Significance of Serum Tumor Markers CEA, Ca 19-9, Ca 125, Ca 15-3, and AFP in Patients Scheduled for Orthotopic Liver Transplantation: Do Elevated Levels Really Mean Malignancy? J Gastrointest Cancer 2023, 54 (2), 442-446. DOI: 10.1007/s12029-021-00798-5 From NLM.
    (30) Gao, Y.; Wang, J.; Zhou, Y.; Sheng, S.; Qian, S. Y.; Huo, X. Evaluation of Serum CEA, CA19-9, CA72-4, CA125 and Ferritin as Diagnostic Markers and Factors of Clinical Parameters for Colorectal Cancer. Sci Rep 2018, 8 (1), 2732. DOI: 10.1038/s41598-018-21048-y.
    (31) Wang, H.; Jin, W.; Wan, C.; Zhu, C. Diagnostic value of combined detection of CA72-4, CA19-9, and carcinoembryonic antigen comparing to CA72-4 alone in gastric cancer: a systematic review and meta-analysis. Translational Cancer Research 2021, 11. DOI: 10.21037/tcr-22-537.
    (32) Scarpa, M.; Noaro, G.; Saadeh, L.; Cavallin, F.; Cagol, M.; Alfieri, R.; Plebani, M.; Castoro, C. Esophageal cancer management: preoperative CA19.9 and CEA serum levels may identify occult advanced adenocarcinoma. World J Surg 2015, 39 (2), 424-432. DOI: 10.1007/s00268-014-2835-1 From NLM.
    (33) Malle, E.; Sodin-Semrl, S.; Kovacevic, A. Serum amyloid A: an acute-phase protein involved in tumour pathogenesis. Cell Mol Life Sci 2009, 66 (1), 9-26. DOI: 10.1007/s00018-008-8321-x.
    (34) Hijmans, W.; Sipe, J. D. Levels of the serum amyloid A protein (SAA) in normal persons of different age groups. Clinical and experimental immunology 1979, 35 (1), 96-100. PubMed.
    (35) Sung, H. J.; Ahn, J. M.; Yoon, Y. H.; Rhim, T. Y.; Park, C. S.; Park, J. Y.; Lee, S. Y.; Kim, J. W.; Cho, J. Y. Identification and validation of SAA as a potential lung cancer biomarker and its involvement in metastatic pathogenesis of lung cancer. J Proteome Res 2011, 10 (3), 1383-1395. DOI: 10.1021/pr101154j From NLM.
    (36) Wang, J. Y.; Zheng, Y. Z.; Yang, J.; Lin, Y. H.; Dai, S. Q.; Zhang, G.; Liu, W. L. Elevated levels of serum amyloid A indicate poor prognosis in patients with esophageal squamous cell carcinoma. BMC Cancer 2012, 12, 365. DOI: 10.1186/1471-2407-12-365 From NLM.
    (37) Moshkovskii, S. A.; Vlasova, M. A.; Pyatnitskiy, M. A.; Tikhonova, O. V.; Safarova, M. R.; Makarov, O. V.; Archakov, A. I. Acute phase serum amyloid A in ovarian cancer as an important component of proteome diagnostic profiling. Proteomics Clin Appl 2007, 1 (1), 107-117. DOI: 10.1002/prca.200600229 From NLM.
    (38) Chan, D. C.; Chen, C. J.; Chu, H. C.; Chang, W. K.; Yu, J. C.; Chen, Y. J.; Wen, L. L.; Huang, S. C.; Ku, C. H.; Liu, Y. C.; et al. Evaluation of serum amyloid A as a biomarker for gastric cancer. Ann Surg Oncol 2007, 14 (1), 84-93. DOI: 10.1245/s10434-006-9091-z From NLM.
    (39) Baba, S.; Takahashi, T.; Kasama, T.; Fujie, M.; Shirasawa, H. A novel polymorphism of human serum amyloid A protein, SAA1 gamma, is characterized by alanines at both residues 52 and 57. Arch Biochem Biophys 1993, 303 (2), 361-366. DOI: 10.1006/abbi.1993.1296 From NLM.
    (40) Uhlar, C.; Whitehead, A. Serum amyloid A, the major vertebrate acute-phase reactant. European Journal of Biochemistry 1999, 265, 501-523. DOI: 10.1046/j.1432-1327.1999.00657.x.
    (41) Hansen, M. T.; Forst, B.; Cremers, N.; Quagliata, L.; Ambartsumian, N.; Grum-Schwensen, B.; Klingelhofer, J.; Abdul-Al, A.; Herrmann, P.; Osterland, M.; et al. A link between inflammation and metastasis: serum amyloid A1 and A3 induce metastasis, and are targets of metastasis-inducing S100A4. Oncogene 2015, 34 (4), 424-435. DOI: 10.1038/onc.2013.568.
    (42) Kamiya, S.; Shimizu, K.; Okada, A.; Inoshima, Y. Induction of Serum Amyloid A3 in Mouse Mammary Epithelial Cells Stimulated with Lipopolysaccharide and Lipoteichoic Acid. Animals (Basel) 2021, 11 (6). DOI: 10.3390/ani11061548 From NLM.
    (43) Tannock, L. R.; De Beer, M. C.; Ji, A.; Shridas, P.; Noffsinger, V. P.; den Hartigh, L.; Chait, A.; De Beer, F. C.; Webb, N. R. Serum amyloid A3 is a high density lipoprotein-associated acute-phase protein. J Lipid Res 2018, 59 (2), 339-347. DOI: 10.1194/jlr.M080887 From NLM.
    (44) Chiba, T.; Han, C. Y.; Vaisar, T.; Shimokado, K.; Kargi, A.; Chen, M. H.; Wang, S.; McDonald, T. O.; O'Brien, K. D.; Heinecke, J. W.; et al. Serum amyloid A3 does not contribute to circulating SAA levels. J Lipid Res 2009, 50 (7), 1353-1362. DOI: 10.1194/jlr.M900089-JLR200.
    (45) Reigstad, C. S.; Lunden, G. O.; Felin, J.; Backhed, F. Regulation of serum amyloid A3 (SAA3) in mouse colonic epithelium and adipose tissue by the intestinal microbiota. PLoS One 2009, 4 (6), e5842. DOI: 10.1371/journal.pone.0005842.
    (46) Li, S.; Kong, D.; Zhang, W.; Li, Y.; Wang, H.; Yang, R.; Sun, Q.; Wang, Z.; Zhang, Z. Low SAA4 gene expression is associated with advanced HCC stage and a poor prognosis. Clin Exp Med 2024, 24 (1), 31. DOI: 10.1007/s10238-023-01279-8 From NLM.
    (47) Ducret, A.; Bruun, C. F.; Bures, E. J.; Marhaug, G.; Husby, G.; Aebersold, R. Characterization of human serum amyloid A protein isoforms separated by two-dimensional electrophoresis by liquid chromatography/electrospray ionization tandem mass spectrometry. Electrophoresis 1996, 17 (5), 866-876. DOI: 10.1002/elps.1150170508 From NLM.
    (48) Quesada-González, D.; Merkoçi, A. Nanomaterial-based devices for point-of-care diagnostic applications. Chem Soc Rev 2018, 47 (13), 4697-4709. DOI: 10.1039/c7cs00837f From NLM.
    (49) Zhang, S.; Geryak, R.; Geldmeier, J.; Kim, S.; Tsukruk, V. V. Synthesis, Assembly, and Applications of Hybrid Nanostructures for Biosensing. Chem Rev 2017, 117 (20), 12942-13038. DOI: 10.1021/acs.chemrev.7b00088 From NLM.
    (50) Chen, A.; Chatterjee, S. Nanomaterials based electrochemical sensors for biomedical applications. Chem Soc Rev 2013, 42 (12), 5425-5438. DOI: 10.1039/c3cs35518g From NLM.
    (51) Masud, M. K.; Na, J.; Younus, M.; Hossain, M. S. A.; Bando, Y.; Shiddiky, M. J. A.; Yamauchi, Y. Superparamagnetic nanoarchitectures for disease-specific biomarker detection. Chem Soc Rev 2019, 48 (24), 5717-5751. DOI: 10.1039/c9cs00174c From NLM.
    (52) Akbarzadeh, A.; Samiei, M.; Davaran, S. Magnetic nanoparticles: Preparation, physical properties, and applications in biomedicine. Nanoscale research letters 2012, 7, 144. DOI: 10.1186/1556-276X-7-144.
    (53) Abarca-Cabrera, L.; Fraga-Garcia, P.; Berensmeier, S. Bio-nano interactions: binding proteins, polysaccharides, lipids and nucleic acids onto magnetic nanoparticles. Biomater Res 2021, 25 (1), 12. DOI: 10.1186/s40824-021-00212-y.
    (54) Guerrini, L.; Alvarez-Puebla, R. A.; Pazos-Perez, N. Surface Modifications of Nanoparticles for Stability in Biological Fluids. Materials (Basel) 2018, 11 (7). DOI: 10.3390/ma11071154.
    (55) Issa, B.; Obaidat, I. M.; Albiss, B. A.; Haik, Y. Magnetic nanoparticles: surface effects and properties related to biomedicine applications. Int J Mol Sci 2013, 14 (11), 21266-21305. DOI: 10.3390/ijms141121266.
    (56) Reddy, L. H.; Arias, J. L.; Nicolas, J.; Couvreur, P. Magnetic nanoparticles: design and characterization, toxicity and biocompatibility, pharmaceutical and biomedical applications. Chem Rev 2012, 112 (11), 5818-5878. DOI: 10.1021/cr300068p From NLM.
    (57) Wu, W.; Wu, Z.; Yu, T.; Jiang, C.; Kim, W. S. Recent progress on magnetic iron oxide nanoparticles: synthesis, surface functional strategies and biomedical applications. Sci Technol Adv Mater 2015, 16 (2), 023501. DOI: 10.1088/1468-6996/16/2/023501 From NLM.
    (58) Kang, Y. S.; Risbud, S.; Rabolt, J. F.; Stroeve, P. Synthesis and Characterization of Nanometer-Size Fe3O4 and γ-Fe2O3 Particles. Chemistry of Materials 1996, 8 (9), 2209-2211. DOI: 10.1021/cm960157j.
    (59) Lin, P. C.; Chou, P. H.; Chen, S. H.; Liao, H. K.; Wang, K. Y.; Chen, Y. J.; Lin, C. C. Ethylene glycol-protected magnetic nanoparticles for a multiplexed immunoassay in human plasma. Small 2006, 2 (4), 485-489. DOI: 10.1002/smll.200500387.
    (60) Perez, J. M.; Simeone, F. J.; Saeki, Y.; Josephson, L.; Weissleder, R. Viral-induced self-assembly of magnetic nanoparticles allows the detection of viral particles in biological media. J Am Chem Soc 2003, 125 (34), 10192-10193. DOI: 10.1021/ja036409g From NLM.
    (61) Chou, P.-H.; Chen, S.-H.; Liao, H.-K.; Lin, P.-C.; Her, G.-R.; Lai, A.; Chen, J.-H.; Lin, C. J.; Chen, Y.-J. Nanoprobe-Based Affinity Mass Spectrometry for Selected Protein Profiling in Human Plasma. Analytical chemistry 2005, 77, 5990-5997. DOI: 10.1021/ac050655o.
    (62) Wang, K.-Y.; Chuang, S.-A.; Lin, P.-C.; Huang, L.-S.; Chen, S.-H.; Ouarda, S.; Pan, W.-H.; Lee, P.-Y.; Lin, C. J.; Chen, Y.-J. Multiplexed Immunoassay: Quantitation and Profiling of Serum Biomarkers Using Magnetic Nanoprobes and MALDI-TOF MS. Analytical chemistry 2008, 80, 6159-6167. DOI: 10.1021/ac800354u.
    (63) Singhal, N.; Kumar, M.; Kanaujia, P. K.; Virdi, J. S. MALDI-TOF mass spectrometry: an emerging technology for microbial identification and diagnosis. Frontiers in Microbiology 2015, 6, Review. DOI: 10.3389/fmicb.2015.00791.
    (64) Tsuchida, S.; Umemura, H.; Nakayama, T. Current Status of Matrix-Assisted Laser Desorption/Ionization-Time-of-Flight Mass Spectrometry (MALDI-TOF MS) in Clinical Diagnostic Microbiology. Molecules 2020, 25 (20). DOI: 10.3390/molecules25204775 From NLM.
    (65) Schrodl, W.; Buchler, R.; Wendler, S.; Reinhold, P.; Muckova, P.; Reindl, J.; Rhode, H. Acute phase proteins as promising biomarkers: Perspectives and limitations for human and veterinary medicine. Proteomics Clin Appl 2016, 10 (11), 1077-1092. DOI: 10.1002/prca.201600028.
    (66) Urieli-Shoval, S.; Cohen, P.; Eisenberg, S.; Matzner, Y. Widespread expression of serum amyloid A in histologically normal human tissues. Predominant localization to the epithelium. J Histochem Cytochem 1998, 46 (12), 1377-1384. DOI: 10.1177/002215549804601206 From NLM.
    (67) Jurecka, P.; Irnazarow, I.; Westphal, A. H.; Forlenza, M.; Arts, J. A.; Savelkoul, H. F.; Wiegertjes, G. F. Allelic discrimination, three-dimensional analysis and gene expression of multiple transferrin alleles of common carp (Cyprinus carpio L.). Fish Shellfish Immunol 2009, 26 (4), 573-581. DOI: 10.1016/j.fsi.2008.08.017 From NLM.
    (68) Uhlar, C. M.; Whitehead, A. S. Serum amyloid A, the major vertebrate acute-phase reactant. Eur J Biochem 1999, 265 (2), 501-523. DOI: 10.1046/j.1432-1327.1999.00657.x From NLM.
    (69) Fourie, C.; Shridas, P.; Davis, T.; de Villiers, W. J. S.; Engelbrecht, A. M. Serum amyloid A and inflammasome activation: A link to breast cancer progression? Cytokine Growth Factor Rev 2021, 59, 62-70. DOI: 10.1016/j.cytogfr.2020.10.006 From NLM.
    (70) Serum Amyloid A Proteins and Their Impact on Metastasis and Immune Biology in Cancer. 2021.
    (71) Gelain, M. E.; Bonsembiante, F. Acute Phase Proteins in Marine Mammals: State of Art, Perspectives and Challenges. Front Immunol 2019, 10, 1220. DOI: 10.3389/fimmu.2019.01220 From NLM.
    (72) Lee, J.; Beatty, G. L. Serum Amyloid A Proteins and Their Impact on Metastasis and Immune Biology in Cancer. Cancers (Basel) 2021, 13 (13). DOI: 10.3390/cancers13133179 From NLM.
    (73) Lee, J. W.; Stone, M. L.; Porrett, P. M.; Thomas, S. K.; Komar, C. A.; Li, J. H.; Delman, D.; Graham, K.; Gladney, W. L.; Hua, X.; et al. Hepatocytes direct the formation of a pro-metastatic niche in the liver. Nature 2019, 567 (7747), 249-252. DOI: 10.1038/s41586-019-1004-y.
    (74) Yasukawa, Y.; Hattori, N.; Iida, N.; Takeshima, H.; Maeda, M.; Kiyono, T.; Sekine, S.; Seto, Y.; Ushijima, T. SAA1 is upregulated in gastric cancer-associated fibroblasts possibly by its enhancer activation. Carcinogenesis 2021, 42 (2), 180-189. DOI: 10.1093/carcin/bgaa131 From NLM.
    (75) Tolson, J.; Bogumil, R.; Brunst, E.; Beck, H.; Elsner, R.; Humeny, A.; Kratzin, H.; Deeg, M.; Kuczyk, M.; Mueller, G. A.; et al. Serum protein profiling by SELDI mass spectrometry: detection of multiple variants of serum amyloid alpha in renal cancer patients. Lab Invest 2004, 84 (7), 845-856. DOI: 10.1038/labinvest.3700097 From NLM.
    (76) Kim, Y. J.; Gallien, S.; El-Khoury, V.; Goswami, P.; Sertamo, K.; Schlesser, M.; Berchem, G.; Domon, B. Quantification of SAA1 and SAA2 in lung cancer plasma using the isotype-specific PRM assays. Proteomics 2015, 15 (18), 3116-3125. DOI: 10.1002/pmic.201400382 From NLM.
    (77) Yassine, H. N.; Trenchevska, O.; He, H.; Borges, C. R.; Nedelkov, D.; Mack, W.; Kono, N.; Koska, J.; Reaven, P. D.; Nelson, R. W. Serum amyloid a truncations in type 2 diabetes mellitus. PLoS One 2015, 10 (1), e0115320. DOI: 10.1371/journal.pone.0115320 From NLM.
    (78) Nys, G.; Cobraiville, G.; Servais, A. C.; Malaise, M. G.; de Seny, D.; Fillet, M. Targeted proteomics reveals serum amyloid A variants and alarmins S100A8-S100A9 as key plasma biomarkers of rheumatoid arthritis. Talanta 2019, 204, 507-517. DOI: 10.1016/j.talanta.2019.06.044 From NLM.
    (79) Wu, D. C.; Wang, K. Y.; Wang, S. S. W.; Huang, C. M.; Lee, Y. W.; Chen, M. I.; Chuang, S. A.; Chen, S. H.; Lu, Y. W.; Lin, C. C.; et al. Exploring the expression bar code of SAA variants for gastric cancer detection. Proteomics 2017, 17 (11). DOI: 10.1002/pmic.201600356.
    (80) O'Mullan, P.; Craft, D.; Yi, J.; Gelfand, C. A. Thrombin induces broad spectrum proteolysis in human serum samples. Clin Chem Lab Med 2009, 47 (6), 685-693. DOI: 10.1515/cclm.2009.003 From NLM.
    (81) Vizovisek, M.; Ristanovic, D.; Menghini, S.; Christiansen, M. G.; Schuerle, S. The Tumor Proteolytic Landscape: A Challenging Frontier in Cancer Diagnosis and Therapy. Int J Mol Sci 2021, 22 (5). DOI: 10.3390/ijms22052514 From NLM.
    (82) Hanahan, D.; Coussens, L. M. Accessories to the crime: functions of cells recruited to the tumor microenvironment. Cancer Cell 2012, 21 (3), 309-322. DOI: 10.1016/j.ccr.2012.02.022 From NLM.
    (83) Cancer Cell Lines and How CRISPR is Transforming Cancer Research. (accessed.
    (84) Kjelgaard-Hansen, M.; Christensen, M. B.; Lee, M. H.; Jensen, A. L.; Jacobsen, S. Serum amyloid A isoforms in serum and synovial fluid from spontaneously diseased dogs with joint diseases or other conditions. Vet Immunol Immunopathol 2007, 117 (3-4), 296-301. DOI: 10.1016/j.vetimm.2007.03.008 From NLM.
    (85) Erich, K.; Reinle, K.; Müller, T.; Munteanu, B.; Sammour, D. A.; Hinsenkamp, I.; Gutting, T.; Burgermeister, E.; Findeisen, P.; Ebert, M. P.; et al. Spatial Distribution of Endogenous Tissue Protease Activity in Gastric Carcinoma Mapped by MALDI Mass Spectrometry Imaging. Mol Cell Proteomics 2019, 18 (1), 151-161. DOI: 10.1074/mcp.RA118.000980 From NLM.

    無法下載圖示 電子全文延後公開
    2029/07/31
    QR CODE