研究生: |
徐筱筑 Hsu, Hsiao-Chu |
---|---|
論文名稱: |
科學桌上遊戲量表開發與效化 Development and Validation of the Scale of Science Board Games |
指導教授: | 張俊彥 |
學位類別: |
碩士 Master |
系所名稱: |
科學教育研究所 Graduate Institute of Science Education |
論文出版年: | 2020 |
畢業學年度: | 108 |
語文別: | 中文 |
論文頁數: | 52 |
中文關鍵詞: | 科學桌遊 、量表開發 、科學 、遊戲 |
英文關鍵詞: | science board games, development and validation of the scale, science, games |
DOI URL: | http://doi.org/10.6345/NTNU202000919 |
論文種類: | 學術論文 |
相關次數: | 點閱:223 下載:34 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究旨在研發科學桌遊量表,探討科學桌遊本身的本質要素,了解不同 科學桌遊的設計要素。藉由參與者填答量表的結果,希望幫助科學桌遊設計 者,檢視此桌遊涵蓋的科學因素和遊戲因素的比重,藉此做桌遊的修正和調 整。此量表之科學因素根據 108 課綱,以科學素養為主軸,分為「核心目的」 與「科學內涵(內容、探究、態度)」,遊戲因素則以桌遊設計時的基本要素 分為「情境目標」與「操作資訊」,共四面向。整份問卷共 33 題,信度 (Cronbach’s α)為 0.942。
正式施測共 144 份有效問卷,研究對象為高中生和國中生,運用三款科學 桌遊(食在好時、瘋水輪流轉、漫遊太陽系)分別對不同班級進行施測,研究 結果顯示:三款遊戲之四面向:核心目的、科學內涵、情境目標、操作資訊平 均值皆達 3 以上(滿分為 5 分)。顯示此三款桌遊之科學元素和遊戲元素皆設計 良好,其中也對各款遊戲的科學因素和遊戲因素比重做長條圖,也對男女生的 質性資料作比較,並且在最後結果討論給予設計者建議,強化其在桌遊設計各 面向的安排與調整。未來此量表也能運用在各種不同的科學桌遊,以利桌遊設 計者改良桌遊之各項元素設計。
The purpose of this research is to develop a scientific board game scale, explore the essential elements of the scientific board game itself, and understand the design elements of different scientific board games. Through the results of the participants filling in the questionnaire, hoping to help the scientific board game designer to review the proportion of scientific factors and game factors covered by this board game, so as to make corrections and adjustments of the board game. The scientific factors of this scale are divided into "core purpose" and "scientific connotation (content, inquiry, attitude)" based on 108 syllabuses(Master Framework for the 12- year Basic Education Curriculum Guidelines), with scientific literacy as the main axis, and game factors are divided into basic elements in the design of board games. "Situational objectives" and "operational information" are four aspects. The entire questionnaire has 33 questions, and the reliability (Cronbach’s α) is 0.942.
A total of 144 valid questionnaires were formally tested. The research subjects were high school students and junior high school students. Three scientific board games (good eating、crazy water、solar system travel) were used to test different classes. The research results show that: The average of the fourth aspect of the three games, core purpose, scientific connotation, situational objectives, and operational information, are all above 3 (full score is 5 points). It shows that the scientific elements and game elements of the three board games are well designed. Among them, a bar chart is made of the scientific factors and the proportion of game factors of each game. The qualitative data of boys and girls are also compared, and the final results are discussed. Give designers advice to strengthen their arrangements and adjustments in all aspects of board game design. In the future, this scale can also be used in various scientific board games to facilitate the design of various elements of board games by board game designers.
Anyanwu, E. G. (2014). Anatomy adventure: A board game for enhancing understanding of anatomy. Anatomical sciences education, 7 (2), 153-160.
Bruner, J. S. (2009). The process of education: Harvard University Press.
Cheng, P. H., Yeh, T. K., & Chang, C. Y. (2016). The utility of the board game for. structural concept of solar system and learning motivation : An astronomy board game for elementary school students. Paper presented at the 2016 EASE conference, Japan: Tokyo.
Engelstein, G. (2017). Gametek: The math and science of gaming. New Jersey: BookBaby.
Francesco Bellotti, Riccardo Berta, Alessandro de Gloria, (2011) Designing Serious. Games for education: from Pedagogical principles to Game Mechanisms
Garris, R., Ahlers, R., & Driskell, J. E. (2002). Games, motivation, and learning: A research and practice model. Simulation & Gaming, 33(4), 441-467.
Gibson, J. J. (1977). The theory of affordances. In R. Shaw & J. Bransford (Eds.), Perceiving, acting, and knowing: Toward an ecological psychology (pp. 67– 82).
Halliday , M .A .K.(1991)CorpusStudies and Probabilistic Grammar .In Aijmer, K .&B.Altenberg(eds.)English Corpus Linguistics . London and New Y ork:Longman,
45
Harrison, A. G., & Treagust, D. F. (2000). A typology of school science models. International Journal of Science Education, 22(9), 1011-1026.
Heinich, Molenda, Russell and Smaldino(1999) ASSURE MODEL
Hinebaugh, J. P. (2009). A board game education. London, UK: Rowman &. Littlefield Education.
Huynh, D.-N. T., Raveendran, K., Xu, Y., Spreen, K., & MacIntyre, B. (2009). Art of defense: a collaborative handheld augmented reality board game. Paper presented at the Proceedings of the 2009 ACM SIGGRAPH symposium on video games.
Josip Slisk,Dewey I. Dykstra, Jr. (1997) The Role of Scientific Terminology in Research and Teaching: Is Something Important Missing?
Karbownik, M. S., Wiktorowska-Owczarek, A., Kowalczyk, E., Kwarta, P.,(2016). Board game versus lecture-based seminar in the teaching of pharmacology of antimicrobial drugs—a randomized controlled trial. FEMS microbiology letters, 363(7).
Kelly, K. (2002). Science toys you can make with your kids. Whole Earth, 110, 73.
Klopfer, E., & Squire, K. (2008). Environmental Detectives—the development of an. augmented reality platform for environmental simulations. Educational Technology Research and Development, 56(2), 203-228.
Kyle, G., & Chick, G. (2002). The social nature of leisure involvement. Journal of. Leisure Research, 34 (4), 426-448.46.
Lederman, N. G. (1992). Students’ and teachers’ conceptions of the nature of science: A review of the research. Journal of Research in Science Teaching, 29(4), 331-359.
Lennon, J. L., & Coombs, D. W. (2006). Child-invented health education games: A. case study for dengue fever. Simulation & Gaming, 37(1), 88-97.
Likert, Rensis,(1932)A Technique for the Measurement of Attitudes, Archives of. Psychology, 140: pp. 1–55.
Michele D. Dickey (2006) Game design and learning: a conjectural analysis of how. massively multiple online role-playing games (MMORPGs) foster intrinsic motivation.
Novak, J.D. (2003).The theory underlying concepts maps and how to construct them. Retrieved March 21, from the World Wide Web: www. camp.coginst.uwf.edu/info/.
O'Brien, T. (1 993). Teaching fundamental aspects of science toys. School Science. and Mathematics, 93(4), 203-207.
Pintrich, P. R. (2000c). Multiple goals, multiple pathways: The role of goal. orientation in learning and achievement. Journal of Educational Psychology, 92, 544–555.
Prensky, M. (2003). Digital game-based learning. Computers in Entertainment, 1(1), 21-21.
Starks, K. (2014). Cognitive behavioral game design: a unified model for designing. serious games. Frontiers in psychology, 5, 28.
Sweller, J. (1994). Cognitive load theory, learning difficulty, and instructional design. Learning and instructional, 4(4), 295-312.
王筱妮、梁淑坤(2018) 桌遊融入國小三年級數與計算課程之設計與反思臺灣數 學教師 39:2 2018.10[民 107.10] 頁 23-49
石裕惠(2016) 桌上遊戲融入國中英語教學對學生的學習動機與學習投入程度之 影響(未出版之碩士論文)。國立中興大學,臺中市。
余岳川(2003)科學玩具實驗 2。台北市:眾光文化。
邱美虹(2008) 模型與建模能力之理論架構。科學教育月刊,306,2-9。
邱美虹、劉俊庚 (2008) 從科學學習的觀點探討模型與建模能力。科學教育月刊,(314), 2-20.
邱美虹(2016) 科學模型與建模:科學模型、科學建模與建模能力。
侯惠澤(2014)。愈玩愈愛學,達人教你挑「桌遊」。親子天下,60,208-211。
陳介宇(2010) 從現代桌上遊戲的特點探討其運用於兒童學習的可行性。國教新知,57,4,40-45。
教育部(2018)十二年國民基本教育課程綱要國民中小學暨普通型高級中等學校-自然科學領域。
張春興、林清山(2009)。教育心理學 (第 22 版)。
張筱莉、林陳涌(2001):學童眼中的科學專有名詞。科學教育學刊。
蔣明珊、盧台華(2000)國小資優教材評鑑檢核表 建構與試用之研究 。
盧秀琴、施慧淳(2016)。玩「昆蟲大富翁」遊戲培養國小學童的科學過程技能。科學教育學刊,24(1),1-30。
盧姝如、朱慶雄、盧昉暄 (2013), 數位化桌上遊戲創新學習模式之開發設計— —以國小中年級生海洋教育為例, 國民教育, 53(4), 45-55。
薛雅文(2014)。設計自製桌上遊戲以提升國小學生對蛙類生態課程學習興趣之行動研究—以「膨風水雞」為例。2014。1-183。
鄭秉漢、李文獻、張俊彥(2019)模型化科學桌遊- 科學教育月刊。
鄭秉漢 (2019)科學桌遊與它們的 X。
賴慶三、王錦銘(2009)科學玩具遊戲教學對國小五年級學生學習成效之研究。