簡易檢索 / 詳目顯示

研究生: 戴易廷
Tai, I-Ting
論文名稱: 人類活動對臺灣低海拔地區小型食肉目動物食性之影響
Anthropogenic effects on the diet of small carnivores in lowland Taiwan
指導教授: 李佩珍
Lee, Pei-Jen
學位類別: 碩士
Master
系所名稱: 生命科學系
Department of Life Science
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 46
中文關鍵詞: 人類-野生動物衝突食性轉移哺乳動物掠食者覓食行為都市化
英文關鍵詞: diet shift, foraging behavior, human-wildlife conflict, mammal, predator, urbanization
DOI URL: http://doi.org/10.6345/NTNU202100235
論文種類: 學術論文
相關次數: 點閱:259下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 人類活動對野生動物可能有正面或負面的影響。小型食肉目動物(small carnivores)因為食性廣泛有彈性,常使他們得以適應高度人為干擾(如都市)的地區。臺灣低海拔地區人口密度高,人類活動對棲息於此的野生動物應有重要的影響。本研究目標物種為鼬獾(Melogale moschata subaurantiaca)及白鼻心(Paguma larvata taivana),兩種臺灣低海拔常見之小型食肉目物種。我利用行政院農委會特有生物研究保育中心提供之樣本,進行排遺形態分析以及毛髮碳氮穩定同位素分析,以量化這兩種食肉目動物之食性;同時,我結合樣本點位之人類活動量指標(Human Footprint),檢測人類活動對食肉目動物的影響。我預期(1)兩物種在食性組成與同位素值皆會有差異;(2)食肉目動物食性組成及動物性食物所佔比例(用以衡量其掠食功能性)會隨人類活動增加而有改變;(3)隨著人類活動量越高,源自人類之非自然食物越有可能成為食肉目動物食性的一部份,導致其碳、氮穩定同位素值的改變;(4)在人類活動量較高或道路影響較大的地點,食肉目動物排遺中人造物出現頻度會增加。結果顯示,鼬獾與白鼻心之間食性組成與碳、氮穩定同位素值皆顯著不同。食肉目動物食性受人類活動影響而有變化。鼬獾的氮穩定同位素值以及食性中動物性食物出現機率皆隨人類活動量上升而增加,反之,白鼻心食性並不受人類活動影響。食肉目動物排遺中人造物的出現機率不受人類活動量及道路的影響。此外,路殺資料顯示鼬獾體重隨人類活動量增加而上升,或許與其食性中動物性食物所佔比例上升有關;而狂犬病的有無則不影響鼬獾的食性組成,但會影響其氮同位素值並提高其空腸機率。本研究結果顯示了人類活動對食肉目動物食性的影響,應能為臺灣低海拔地區野生動物的經營管理與保育提供有參考價值之資訊。

    Anthropogenic effects on wildlife can be positive or negative. Small carnivores, with their broad and flexible diets, can often tolerate high levels of human activities such as urban environments. Taiwan’s lowland areas are heavily populated by human, which could have substantial impacts on wildlife. This study focused on two carnivore species wildly distributed across lowland Taiwan, the Formosan ferret-badger Melogale moschata subaurantiaca and Formosan masked palm civet Paguma larvata taivana. I combined microscopic analysis of fecal samples and stable isotope analysis (carbon and nitrogen) of hair samples from roadkill provided by Taiwan Endemic Species Research Institute to quantify carnivores’ diets. I extracted human footprint values at the sample locations as a proxy for human activities to test the anthropogenic effects on carnivore diets. I predicted that: (1) the two carnivore species have different dietary compositions and stable isotope values; (2) the carnivores’ diets, and percentage of animal prey in their diets (a measure of predatory function), change with different levels of human activities; (3) with increasing human activities and consequently easier access to anthropogenic food resources, the carnivores’ stable carbon and nitrogen isotopes would change; (4) where human activities or road impacts are high, the occurrences of artificial materials in the carnivores’ feces would increase. The results showed that Formosan ferret-badgers and Formosan masked palm civets are different in both dietary compositions and stable isotope values. These carnivores changed their diets with different levels of human activities. Specifically, Formosan ferret-badgers had increased stable nitrogen isotope values, as well as percentage of animal prey in their diets, with higher levels of human activities; Formosan masked palm civets, on the other hand, did not seem to be affected by human activities. The occurrences of artificial materials in the carnivores’ feces were not affected by human activities or road impacts. In addition, I found that Formosan ferret-badgers in areas of high human activities tended to have larger body weights, which might be related to the higher percentage of animal prey in their diets. Rabies did not affect Formosan ferret-badgers’ dietary compositions, but altered their nitrogen isotope values and raised their probability of having empty intestines (starvation). This study revealed some of the potential anthropogenic impacts on carnivores’ diets, and can provide valuable information for wildlife management and conservation in lowland Taiwan.

    誌謝 i 摘要 ii Abstract iii 目錄 v 表目錄 vi 圖目錄 vi 前言 1 研究材料與方法 5 結果 10 討論 12 參考文獻 36 附錄1、人類活動量指標(Human Footprint)的計算方式 41 附錄2、顯微鏡砂土形態比對DNA檢測食肉目個體是否食用環節動物之正確率 44

    Bateman, A. S., & Kelly, S. D. (2007). Fertilizer nitrogen isotope signatures. Isotopes in Environmental and Health Studies, 43, 237-247.
    Bateman, P. W., & Fleming, P. A. (2012). Big city life: carnivores in urban environments. Journal of Zoology, 287, 1-23.
    Bearhop, S., Adams, C.E., Waldron, S., Fuller, R.A., & MacLeod, H. (2004). Determining trophic niche width: a novel approach using stable isotope analysis. Journal of Animal Ecology, 73, 1007-1012.
    Chyn, K., Lin, T. E., Chen, Y. K., Chen, C. Y., & Fitzgerald, L. A. (2019). The magnitude of roadkill in Taiwan: Patterns and consequences revealed by citizen science. Biological Conservation, 237, 317-326.
    Chuang, S. A., & Lee, L. L. (1997). Food habits of three carnivore species (Viverricula indica, Herpestes urva, and Melogale moschata) in Fushan Forest, northern Taiwan. Journal of Zoology, 243, 71-79.
    Dalerum, F., & Angerbjörn, A. (2005). Resolving temporal variation in vertebrate diets using naturally occurring stable isotopes. Oecologia, 144, 647-658.
    Dickman, C. R. (1987). Habitat fragmentation and vertebrate species richness in an urban environment. Journal of Applied Ecology, 24, 337-351.
    Fedriani, J. M., Fuller, T. K., & Sauvajot, R. M. (2001). Does availability of anthropogenic food enhance densities of omnivorous mammals? An example with coyotes in southern California. Ecography, 24, 325-331.
    Feng, X. (2002). A theoretical analysis of carbon isotope evolution of decomposing plant litters and soil organic matter. Global Biogeochemical Cycles, 16, 66-1.
    Fischer, J. D., Cleeton, S. H., Lyons, T. P., & Miller, J. R. (2012). Urbanization and the predation paradox: the role of trophic dynamics in structuring vertebrate communities. Bioscience, 62, 809-818.
    Hatch, K. A. (2012). The Use and Application of Stable Isotope Analysis to the Study of Starvation, Fasting, and Nutritional Stress in Animals. In: McCue M. (eds) Comparative Physiology of Fasting, Starvation, and Food Limitation. Springer, Berlin, Heidelberg.
    Iwama, M., Yamazaki, K., Matsuyama, M., Hoshino, Y., Hisano, M., Newman, C., & Kaneko, Y. (2017). Masked palm civet Paguma larvata summer diet differs between sexes in a suburban area of central Japan. Mammal Study, 42, 185-190.
    Kelly, J. F. (2000). Stable isotopes of carbon and nitrogen in the study of avian and mammalian trophic ecology. Canadian Journal of Zoology, 78, 1-27.
    Lowry, H., Lill, A., & Wong, B. B. (2013). Behavioural responses of wildlife to urban environments. Biological Reviews, 88, 537-549.
    Matsuo, R., & Ochiai, K. (2009). Dietary overlap among two introduced and one native sympatric carnivore species, the raccoon, the masked palm civet, and the raccoon dog, in Chiba Prefecture, Japan. Mammal Study, 34, 187-194.
    McClelland, J. W., Valiela, I., & Michener, R. H. (1997). Nitrogen‐stable isotope signatures in estuarine food webs: A record of increasing urbanization in coastal watersheds. Limnology and Oceanography, 42, 930-937.
    Miller, J. R., & Hobbs, R. J. (2002). Conservation where people live and work. Conservation Biology, 16, 330-337.
    NASA, METI, AIST, Japan Spacesystems & U.S./Japan ASTER Science Team (2009). ASTER Global Digital Elevation Model Version 2 (ASTGTMv002). NASA EOSDIS Land Processes DAAC. https://doi.org/10.5067/ASTER/ASTGTM.002. Accessed 8 Fabray 2021.
    Newsome, S. D., Ralls, K., Van Horn Job, C., Fogel, M. L., & Cypher, B. L. (2010). Stable isotopes evaluate exploitation of anthropogenic foods by the endangered San Joaquin kit fox (Vulpes macrotis mutica). Journal of Mammalogy, 91, 1313-1321
    O'brien, B. J., & Stout, J. D. (1978). Movement and turnover of soil organic matter as indicated by carbon isotope measurements. Soil Biology and Biochemistry, 10, 309-317.
    O'Leary, M. H. (1988). Carbon isotopes in photosynthesis. Bioscience, 38, 328-336.
    Schmidt, O., Curry, J. P., Dyckmans, J., Rota, E., & Scrimgeour, C. M. (2004). Dual stable isotope analysis (δ13C and δ15N) of soil invertebrates and their food sources. Pedobiologia, 48, 171-180.
    Shochat, E., Warren, P. S., Faeth, S. H., McIntyre, N. E., & Hope, D. (2006). From patterns to emerging processes in mechanistic urban ecology. Trends in Ecology and Evolution, 21, 186-191.
    Szpak, P., Millaire, J. F., White, C. D., & Longstaffe, F. J. (2012). Influence of seabird guano and camelid dung fertilization on the nitrogen isotopic composition of field-grown maize (Zea mays). Journal of Archaeological Science, 39, 3721-3740.
    Szpak, P., Longstaffe, F. J., Millaire, J. F., & White, C. D. (2014). Large variation in nitrogen isotopic composition of a fertilized legume. Journal of Archaeological Science, 45, 72-79.
    Torii, H. (1986). Food habits of the masked palm civet, Paguma larvata Hamilton-Smith. Journal of the Mammalogical Society of Japan, 11, 39-43.
    United Nations Department of Economic and Social Affairs. (2018). 2018 Revision of World Urbanization Prospects. https://www.un.org/development/desa/publications/2018-revision-of-world-urbanization-prospects.html. Accessed 2 January 2021.
    Venter, O., Sanderson, E. W., Magrach, A., Allan, J. R., Beher, J., Jones, K. R., Possingham, H. P., Laurance, W. F., Wood, P., Fekete,B. M., Levy M. A., & Watson J. E. M. (2016a). Sixteen years of change in the global terrestrial human footprint and implications for biodiversity conservation. Nature Communications, 7, 1-11.
    Venter, O., Sanderson, E. W., Magrach, A., Allan, J. R., Beher, J., Jones, K. R., Possingham, H. P., Laurance, W. F., Wood, P., Fekete,B. M., Levy M. A., & Watson J. E. M. (2018). Last of the Wild Project, Version 3 (LWP-3): 2009 Human Footprint, 2018 Release. Palisades, NY: NASA Socioeconomic Data and Applications Center (SEDAC). https://doi.org/10.7927/H46T0JQ4. Accessed 22 July 2020.
    White, T. C. (2011). The significance of unripe seeds and animal tissues in the protein nutrition of herbivores. Biological Reviews, 86, 217-224.
    Wu, H. Y. (1999). Is there current competition between sympatric Siberian weasels (Mustela sibirica) and ferret badgers (Melogale moschata) in a subtropical forest ecosystem of Taiwan? Zoological Studies, 38, 443-451.
    Zhou, Y., Zhang, L., Kaneko, Y., Newman, C., & Wang, X. M. (2008a). Frugivory and seed dispersal by a small carnivore, the Chinese ferret-badger, Melogale moschata, in a fragmented subtropical forest of central China. Forest Ecology and Management, 255, 1595-1603.
    Zhou, Y., Zhang, J., Slade, E., Zhang, L., Palomares, F., Chen, J., Wang, X. & Zhang, S. (2008b). Dietary shifts in relation to fruit availability among masked palm civets (Paguma larvata) in central China. Journal of Mammalogy, 89, 435-447.
    王健、劉群秀、索建中、江紅星、華育平。(2008)。湖北後河自然保護區果子狸食物組成初步研究。動物學雜誌,43,91-95。
    行政院農委會林務局。(2004)。新竹、苗栗之淺山地區小型食肉目動物之現況與保育研究。行政院農業委員會林務局委託研究系列94-00-8-05。
    沈慧萍。(2018)。台灣蚯蚓基因條碼之建立。特有生物研究保育中心107年度年報。行政院農業委員會,臺灣。
    南投縣鄉公所網頁。http://www.guoshing.gov.tw/ Accessed 27 12 2020。
    國家發展委員會。(2018)。都市及區域發展統計彙編。https://www.ndc.gov.tw/News_Content.aspx. Accessed 28 6 2020。
    許玉靜。(2021)。臺灣低海拔食肉目動物之排遺DNA分析-兼論人為活動對食肉目動物食性之影響。國立臺灣師範大學生命科學系碩士論文。臺北,臺灣。
    陳宣儀。(2016)。使用穩定碳、氮同位素判別白肉雞棒腿產地來源。國立中興大學動物科學系碩士論文。台中,臺灣。
    張仕緯、沈慧萍、蔡奇立。(2018)。鼬獾胃內含物與狂犬病關連性之研究。特有生物研究保育中心107年度年報。行政院農業委員會,臺灣。
    張偉廷。(2018)。北臺灣食肉目群聚食性變異研究。國立臺灣師範大學生命科學系碩士論文。臺北,臺灣。

    下載圖示
    QR CODE