簡易檢索 / 詳目顯示

研究生: 劉文弘
Liu, Wen-Hung
論文名稱: 應用於5G行動通訊之38GHz混頻器設計
Design of 38 GHz Mixers for Fifth Generation Wireless Communication System
指導教授: 蔡政翰
Tsai, Jen-Han
學位類別: 碩士
Master
系所名稱: 電機工程學系
Department of Electrical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 107
中文關鍵詞: 第五代行動通訊混頻器線性提升技術
英文關鍵詞: 5G, Mixers, Boosting Linearization Technique
DOI URL: http://doi.org/10.6345/NTNU202000324
論文種類: 學術論文
相關次數: 點閱:126下載:28
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文研究內容為實現兩顆應用於第五代行動通訊系統之升頻混頻器,皆使用TSMC 65nm CMOS製程,設計頻段皆為38 GHz,此為第五代行動通訊極有可能在未來開放的頻段之一,第二章會大致介紹混頻器的主要參數和設計時的參考公式,第三章與第四章分別針對兩顆混頻器做製作過程的描述與特性分析。
    第一顆晶片整體面積為0.58 mm × 0.57 mm,使用Fundamental架構並加上LO端線性提升技術(Local Oscillator boosting linearization technique)來研究其功效,中心頻率為38 GHz,在LO驅動功率9 dBm與0.5 V的閘極偏壓下,轉換增益(Conversion Gain)為-8.4 dB,OP1dB(Output Power 1 dB compression point)為-1.5 dBm,在RF(Radio frequency)頻率31-41 GHz間,當LO輸入功率為6 dBm時,轉換增益範圍為-10.4 dB到-11.3 dB間,直流功耗為0 mW。
    第二顆晶片整體面積為0.82 mm × 0.52 mm,使用Sub-Harmonic架構並加上LO端線性提升技術來研究其功效,中心頻率為38 GHz,在LO驅動功率10 dBm與0.0 V的閘極偏壓和0.25 V的可變電容偏壓下,轉換增益為-10.4 dB,OP1dB為-9.3 dBm,在RF頻率29-40 GHz間,當LO輸入功率為10 dBm時,轉換增益範圍為-10.5 dB到-10.1 dB,直流功耗為0 mW。

    The research of this thesis is based on two up-converter mixers. Both were fabricated using TSMC 65nm CMOS for 38 GHz applications. In the second half of this thesis, we introduce the design and implementation of mixers. Then, we express the design flow and analysis.
    The chip size of the first circuit is 0.58 mm × 0.57 mm. The mixer is based on the fundamental topology with the local oscillator boosting linearization technique. This mixer provides -8.4 dB conversion gain with -1.5 dBm OP1dB(Output Power 1 dB compression point) at 38 GHz under 9 dBm LO(Local Oscillator) drive power. The bias-gate voltage is 0.5 V. The conversion gain is within the range of -10.4 to -11.3 dB with 31 to 41 GHz when LO power is 6 dBm. The dc power consumption is zero.
    The chip size of the second circuit is 0.82 mm × 0.52 mm. The mixer is based on a sub-harmonic topology with LO boosting linearization technique. This mixer provides -10.4 dB conversion gain with -9.3 dBm OP1dB at 38 GHz under 10 dBm LO drive power. The bias-gate voltage is 0.0 V and the voltage of varactor is 0.25 V. The conversion gain is within the range of -10.5 to -10.1 dB with 29 to 40 GHz when LO power is 10 dBm. The dc power consumption is zero.

    摘要 I ABSTRACT III 誌謝 V 目錄 VII 圖目錄 IX 表目錄 XV 第一章 緒論 1 1.1 研究背景與動機 1 1.2 文獻探討 1 1.3 研究成果 5 第二章 混頻器基本介紹 7 2.1 概述 7 2.2 混頻器之設計參數 7 2.3 混頻器種類與常用架構 10 2.4 基礎混頻器和次諧波混頻器 10 第三章 利用LO端線性提升技術之38GHz被動基礎混頻器 13 3.1 簡介 13 3.2 利用LO端線性提升技術之38GHz被動基礎混頻器設計 15 3.3 混頻器之模擬結果 35 3.4 混頻器之量測與模擬比較結果 40 3.5 結果與討論 46 3.6 總結 52 第四章 利用LO端線性提升技術之38GHz被動次諧波混頻器 55 4.1 簡介 55 4.2 利用LO端線性提升技術之38GHz被動次諧波混頻器設計 57 4.3 混頻器之模擬結果 76 4.4 混頻器之量測與模擬比較結果 81 4.5 結果與討論 92 4.6 總結 99 第五章 結論 101 參考文獻 103

    [1] H. Chiou and H. Chou, "A 0.4 V Microwatt Power Consumption Current-Reused Up-Conversion Mixer," in IEEE Microwave and Wireless Components Letters, vol. 23, no. 1, pp. 40-42, Jan. 2013.
    [2] J. Tsai, W. Lin and C. Huang, "Design of 15–34 GHz low-power up-conversion ring mixer using 0.18 μm CMOS technology," 2016 IEEE International Symposium on Radio-Frequency Integration Technology (RFIT), Taipei, 2016, pp. 1-3.
    [3] A. Valdes-Garcia, S. Reynolds and J. Plouchart, "60 GHz transmitter circuits in 65nm
    CMOS," 2008 IEEE Radio Frequency Integrated Circuits Symposium, Atlanta, GA,
    2008, pp. 641-644.
    [4] M. Chou and H. Chiu, "A broadband 60 GHz CMOS up-converter design and analysis,"
    2016 IEEE International Workshop on Electromagnetics: Applications and Student
    Innovation Competition (iWEM), Nanjing, 2016, pp. 1-3.
    [5] A. Verma, K. K. O and J. Lin, "A low-power up-conversion CMOS mixer for 22-29-GHz ultra-wideband applications," in IEEE Transactions on Microwave Theory and Techniques, vol. 54, no. 8, pp. 3295-3300, Aug. 2006.
    [6] H. Li and C. E. Saavedra, "Linearization of Active Downconversion Mixers at the IF Using Feedforward Cancellation," in IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 66, no. 4, pp. 1620-1631, April 2019.
    [7] M. S. Clements, A. Pham, J. S. Sacks and S. E. Avery, "Second-Harmonic Injection Linearization of Millimeter-Wave FET Resistive Mixers," in IEEE Microwave and Wireless Components Letters, vol. 29, no. 10, pp. 669-672, Oct. 2019.
    [8] H. Khosrowjerdi, H. Nabovati and R. Hedayati, "A mathematical technique for RF mixer linearization using second order Intermodulation injection," 2010 International Conference on Electronics and Information Engineening, Kyoto, 2010, pp. V1-572-V1-575.
    [9] Z. Chen et al., "A 27.5–43.5 GHz high linearity up-conversion CMOS mixer for 5G communication," 2017 IEEE Electrical Design of Advanced Packaging and Systems Symposium (EDAPS), Haining, 2017, pp. 1-3.
    [10] B. Shi, "Mixer linearization using dynamic bias circuit with an integrated diode linearizer," 2016 IEEE Region 10 Conference (TENCON), Singapore, 2016, pp. 2517-2520.
    [11] J. Chen, C. Kuo, Y. Hsin and H. Wang, "A 15–50 GHz broadband resistive FET ring mixer using 0.18-µm CMOS technology," 2010 IEEE MTT-S International Microwave Symposium, Anaheim, CA, 2010, pp. 1-1.
    [12] T. Y. Yang, H. K. Chiou, "A 16-46 GHz mixer using broadband multilayer balun in 0.18-,um CMOS technology", IEEE Microw. Wireless Compon. Lett., voU7, no.7, pp. 534-536, July 2007.
    [13] C. Kuo, C. Kuo, C. Kuo, S. A. Maas and H. Wang, "Novel Miniature and Broadband Millimeter-Wave Monolithic Star Mixers," in IEEE Transactions on Microwave Theory and Techniques, vol. 56, no. 4, pp. 793-802, April 2008.
    [14] K. Hettak, G. A. Morin, and M. G. Stubbs, “A novel miniature multilayer MMIC CPW single sideband CPW mixer for up conversion at 44.5 GHz,” IEEE Microw. Wireless Compon. Lett., vol. 15, no. 9, pp. 606–608, Sep. 2005
    [15] T. Tsai et al., "A Ka-Band Sub-Harmonically Pumped Mixer Using Diode-Connected MOSFET for 5G MM-Wave Transceivers," 2018 Asia-Pacific Microwave Conference (APMC), Kyoto, 2018, pp. 488-490.
    [16] S. Huang, T. Xi, D. Huang, P. Gui and R. Taori, "Low-power and high-linearity CMOS parametric passive mixers for millimeter wave applications," 2015 Texas Symposium on Wireless and Microwave Circuits and Systems (WMCS), Waco, TX, 2015, pp. 1-5.
    [17] E. Afshari and A. Hajimiri, "Non-linear transmission lines for pulse shaping in silicon," Proceedings of the IEEE 2003 Custom Integrated Circuits Conference, 2003., San Jose, CA, USA, 2003, pp. 91-94.
    [18] F. Martin, "Understanding soliton wave propagation in nonlinear transmission lines for millimeter wave multiplication," 25th International Conference on Infrared and Millimeter Waves (Cat. No.00EX442), Beijing, China, 2000, pp. 451-452.
    [19] Y. Lin et al., "A Ka-band High Linearity Up-Conversion Mixer with LO Boosting
    Linearization Technique," 2018 48th European Microwave Conference (EuMC), Madrid, 2018, pp. 259-262.
    [20] T. Xi, S. Huang, S. Guo, D. Huang, S. Chakraborty and P. Gui, "A New Passive CMOS Mixer With LO Shaping Technique for mmWave Applications," in IEEE Microwave and Wireless Components Letters, vol. 26, no. 6, pp. 455-457, June 2016.
    [21] Y. Su, C. Meng, and P. Y. Wu, “Q-Band pHEMT and mHEMT subharmonic Gilbert upconversion mixers,” IEEE Microw. Wireless Compon. Lett., vol. 19, no. 6, pp. 392–394, Jun. 2009.
    [22] C. C. Su, C. H. Liu, C. M. Lin, Y. L. Tsai and Y. H. Wang, "A 24–44 GHz Broadband Subharmonic Mixer With Novel Isolation-Enhanced Circuit," IEEE Microwave and Wireless Components Letters, vol. 25, no. 2, pp. 124-126, Feb. 2015
    [23] C.M. Lin, H. K. Lin, Y.A. Lai, C. P. Chang, andY.H.Wang, “A10–40GHz broadband subharmonic monolithic mixer in 0.18 m CMOS technology,” IEEE Microw. Wireless Compon. Lett., vol. 19, no. 2, pp.95–97, Feb. 2009.
    [24] 林武璇,“應用於第五代行動通訊之28GHz相移器與升頻混頻器研究”,國立臺灣師
    範大學電機工程研究所碩士論文,民國106年。
    [25] 林芳銘,“3.5GHz向量合成式相移器與38GHz鏡像抑制降頻器設計”,國立臺灣師
    範大學電機工程研究所碩士論文,民國108年。
    [26] 陳俊亨,”超寬頻通訊系統之降頻混頻器的設計與實現”,國立交通大學電信工程
    學系研究所碩士論文,民國95年
    [27] 雷達通信電子戰每日頭條網頁,網頁內容(2018年6月3日)。檢自
    https://kknews.cc/zh-tw/news/aaqqk9g.html (Jan.01, 2020)

    下載圖示
    QR CODE