簡易檢索 / 詳目顯示

研究生: 劉宗銘
Liu, Tsung-Ming
論文名稱: 臺灣東部外海氣旋渦引起黑潮截斷之研究
Study of Kuroshio cut off by cyclonic eddy off eastern Taiwan
指導教授: 鄭志文
Zheng, Zhe-Wen
學位類別: 碩士
Master
系所名稱: 地球科學系
Department of Earth Sciences
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 59
中文關鍵詞: 中尺度渦旋黑潮黑潮入侵呂宋海峽ROMS
英文關鍵詞: mesoscale eddy, Kuroshio, Kuroshio intrusion, Luzon Strait, ROMS
DOI URL: http://doi.org/10.6345/THE.NTNU.DES.002.2019.B07
論文種類: 學術論文
相關次數: 點閱:249下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究探討氣旋渦西移至臺灣東部外海,撞擊黑潮後,對黑潮造成的影響。研究結果顯示,在研究期間 (1993年1月至2016年4月),衛星高度計資料指出,氣旋渦西移至臺灣東部外海 (123°E) 共發生18次,並且其中8次發生後有伴隨黑潮入侵呂宋海峽事件。氣旋渦西移路徑大致可以分3種:(1) 從呂宋島東側往西北移動(18°N~20°N) (2)從呂宋海峽東側向西移(20°N~22°N) (3)從臺灣東部外海西移(22°N~23°N)。本研究針對第三種氣旋渦移動路徑:從臺灣東部外海西移的氣旋渦事件進一步分析,發現當氣旋渦西移至123°E時,臺灣東部外海的黑潮受到氣旋渦影響,導致黑潮向北的流速減弱,隨後在黑潮上游處發生黑潮入侵呂宋海峽事件,並在臺灣西南產生順時針渦流。另一部份黑潮則向東沿著氣旋渦以逆時針方向向北流動,與Kuo & Chern (2011)有相同的結果。氣旋渦由黑潮東邊向西傳遞時,向西移動到經度123°E氣旋渦強度就會開始減弱,可能是受到黑潮北向流的影響而減弱並往北移,與Liang et al. (2003)所定義的黑潮東邊邊界123°E相符合。進一步用ROMS模式(Regional Ocean Modeling System)模擬,也同樣發現氣旋渦西移到臺灣東岸撞擊黑潮後,臺灣東岸的黑潮流速減弱,且發現黑潮上游有入侵呂宋海峽的現象,在臺灣西南也發現一順時針渦流產生。由ROMS模式結果輸出的地轉流場,計算呂宋海峽區域內的渦度情形,發現當氣旋渦碰撞黑潮時,渦度值從低值有顯著增加的現象發生,為黑潮入侵呂宋海峽所造成。進一步藉由渦度變化來解釋黑潮入侵呂宋海峽現象,當氣旋渦西移撞擊黑潮,導致臺灣東岸的黑潮向北流速減弱,進而造成呂宋海峽東側的黑潮流速減弱,使得呂宋海峽區域的渦度產生改變(正渦變小),為了維持區域內渦度守恆,因此黑潮向西轉而入侵呂宋海峽(正渦增加)。

    This research focus on the influence of cyclonic eddy on Kuroshio on outer region of eastern Taiwan sea. According to data of satellite altimeter, during the study period (January 1993 to April 2016), cyclonic eddy moved westward to the outer region of eastern Taiwan sea (123°E) for 18 times, among eight of them. When there is Kuroshio intrusion at Luzon Strait. The eddy westward path can be roughly divided into these three types: (1) moves from east of Luzon Island to northwest (18°N~20°N) (2) moves from east of Luzon Strait to west (20°N~22°N) (3) moves westward from Taiwan eastern sea (22°N~23°N). This study focus on the third cyclonic eddy moving path: a further analysis on west moving cyclonic eddy event at outer eastern region of Taiwan sea, and found that when the cyclonic eddy moves westward to 123°E, the Kuroshio met a cyclonic eddy, it results a decrease in velocity for the flow of Kuroshio. Followed by an intrusion into the Luzon Strait at upstream of Kuroshio, and occurs a clockwise eddy in the southwest of Taiwan. The other part of the Kuroshio flows eastward, and then northward when it flows along the cyclonic eddy counterclockwise, attaining a same result as Kuo & Chern (2011). When the cyclonic eddy is transmitted from the east to the west of the Kuroshio, and move westward to the longitude of 123°E, the vorticity of the cyclonic eddy begins to weaken, which may be influenced by a northward flowing Kuroshio, results it to move northward, according to definition by Liang et al. (2003), where the boundary for east of Kuroshio is 123°E. After further simulation using ROMS model (Regional Ocean Modeling System), a same result appeared that the eddy at east coast of Taiwan weakened, when met Kuroshio and appeared the phenomenon of intrusion into Luzon Strait at upstream of Kuroshio. A clockwise eddy was also found in the southwest of Taiwan. From the geostrophic field output by ROMS model, the vorticity calculated for Luzon Strait shows when the cyclonic eddy collides Kuroshio, the vorticity value increases significantly, so the changes could be concluded that the vorticity is influenced by the intrusion of Kuroshio into the Luzon Strait. Furthermore, the vorticity change could be used to explain the phenomenon of Kuroshio intrusion into Luzon Strait. When the west shifted cyclonic eddy met Kuroshio, resulted Kuroshio has a weakened northward flow on east coast of Taiwan, which in turn weakens the velocity of Kuroshio flow on the eastern side of the Luzon Strait. The vorticity in Luzon Strait area changes (positive vorticity becomes smaller), in order to maintain the conservation vorticity of in the region, and so when westward Kuroshio moves in and invades Luzon Strait too (positive vorticity increases).

    摘要 i Abstract iii 圖次 vii 第一章 緒論 1 1.1 研究區域 1 1.2 文獻回顧 2 1.3 研究動機 7 第二章 資料來源與研究方法 9 2.1 衛星資料 9 2.1.1 AVISO資料 9 2.1.2 HYCOM資料 10 2.2 研究方法 11 第三章 結果與討論 13 3.1氣旋渦與黑潮入侵事件統計 13 3.2 以衛星觀測資料分析氣旋渦對黑潮之影響 15 3.3以ROMS模式模擬結果探討西移氣漩渦撞擊黑潮與黑潮入侵呂宋海峽之間的關係 20 第四章 結論與展望 24 4.1 衛星資料 24 4.1.1氣旋渦與黑潮入侵事件統計 24 4.1.2衛星觀測資料氣旋渦對黑潮之影響 24 4.2 模式結果 25 4.3 未來研究方向 26 參考文獻 27

    王冑 & 陳慶生. (2000). 對黑潮入侵南海過程的一些觀察與看法. 台灣海洋學刊, 38, 129-151.
    李逸環. (2003). 西太平洋中尺度渦漩及其對黑潮的影響. 國立臺灣大學海洋研究所博士論文,89pp.
    郭怡君. (2013). 台灣附近海域對西行颱風通過反應之數值模擬研究. 國立臺灣大學海洋研究所博士論文,108pp.
    許珮慈. (2011). 利用數值試驗探討黑潮入侵南海的機制. 臺灣師範大學海洋環境科技研究所碩士論文, 73pp.
    Chang, M. H., Jan, S., Mensah, V., Andres, M., Rainville, L., Yang, Y. J., & Cheng, Y. H. (2018). Zonal migration and transport variations of the Kuroshio east of Taiwan induced by eddy impingements. Deep Sea Research Part I: Oceanographic Research Papers, 131, 1-15.
    Chang, Y. L., & Oey, L. Y. (2012). The Philippines–Taiwan Oscillation: Monsoonlike interannual oscillation of the subtropical–tropical western North Pacific wind system and its impact on the ocean. Journal of Climate, 25(5), 1597-1618.
    Chang, Y. L., Miyazawa, Y., & Guo, X. (2015). Effects of the STCC eddies on the Kuroshio based on the 20-year JCOPE2 reanalysis results. Progress in Oceanography, 135, 64-76.
    Chelton, D. B., Schlax, M. G., & Samelson, R. M. (2011). Global observations of nonlinear mesoscale eddies. Progress in Oceanography, 91(2), 167-216.
    Cummings, J. A. (2005). Operational multivariate ocean data assimilation. Quarterly Journal of the Royal Meteorological Society, 131(613), 3583-3604.
    Cummings, J. A., & Smedstad, O. M. (2013). Variational data assimilation for the global ocean. In Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications (Vol. II) (pp. 303-343). Springer, Berlin, Heidelberg.
    Farris, A., & Wimbush, M. (1996). Wind-induced kuroshio intrusion into the South China Sea. Journal of Oceanography, 52(6), 771-784.
    Hsin, Y. C., Qiu, B., Chiang, T. L., & Wu, C. R. (2013). Seasonal to interannual variations in the intensity and central position of the surface Kuroshio east of Taiwan. Journal of Geophysical Research: Oceans, 118(9), 4305-4316.
    Hwang, C., Wu, C. R., & Kao, R. (2004). TOPEX/Poseidon observations of mesoscale eddies over the Subtropical Countercurrent: Kinematic characteristics of an anticyclonic eddy and a cyclonic eddy. Journal of Geophysical Research: Oceans, 109, C08013.
    Ichikawa, K., Tokeshi, R., Kashima, M., Sato, K., Matsuoka, T., Kojima, S., & Fujii, S. (2008). Kuroshio variations in the upstream region as seen by HF radar and satellite altimetry data. International Journal of Remote Sensing, 29(21), 6417-6426.
    Johns, W. E., Lee, T. N., Zhang, D., Zantopp, R., Liu, C. T., & Yang, Y. (2001). The Kuroshio east of Taiwan: Moored transport observations from the WOCE PCM-1 array. Journal of Physical Oceanography, 31(4), 1031-1053.
    Kuo, Y. C., & Chern, C. S. (2011). Numerical study on the interactions between a mesoscale eddy and a western boundary current. Journal of Oceanography, 67(3), 263-272.
    Lee, I. H., Ko, D. S., Wang, Y. H., Centurioni, L., & Wang, D. P. (2013). The mesoscale eddies and Kuroshio transport in the western North Pacific east of Taiwan from 8-year (2003–2010) model reanalysis. Ocean Dynamics, 63(9-10), 1027-1040.
    Li, Q. P., Franks, P. J., Ohman, M. D., & Landry, M. R. (2012). Enhanced nitrate fluxes and biological processes at a frontal zone in the southern California current system. Journal of Plankton Research, 34(9), 790-801.
    Liang, W. D., Tang, T. Y., Yang, Y. J., Ko, M. T., & Chuang, W. S. (2003). Upper-ocean currents around Taiwan. Deep Sea Research Part II: Topical Studies in Oceanography, 50(6-7), 1085-1105.
    McGillicuddy, D. J., Anderson, L. A., Bates, N. R., Bibby, T., Buesseler, K. O., Carlson, C. A., ... & Hansell, D. A. (2007). Eddy/wind interactions stimulate extraordinary mid-ocean plankton blooms. Science, 316(5827), 1021-1026.
    Miyazawa, Y., Guo, X., & Yamagata, T. (2004). Roles of mesoscale eddies in the Kuroshio paths. Journal of Physical Oceanography, 34(10), 2203-2222.
    Nitani, H. (1972). Beginning of the Kuroshio. Kuroshio, Physical Aspect of the Japan Current.
    Nan, F., Xue, H., Chai, F., Shi, L., Shi, M., & Guo, P. (2011). Identification of different types of Kuroshio intrusion into the South China Sea. Ocean Dynamics, 61(9), 1291-1304.
    Nan, F., Xue, H., & Yu, F. (2015). Kuroshio intrusion into the South China Sea: A review. Progress in Oceanography, 137, 314-333.
    Qiu, B. (1999). Seasonal eddy field modulation of the North Pacific Subtropical Countercurrent: TOPEX/Poseidon observations and theory. Journal of Physical Oceanography, 29(10), 2471-2486.
    Roemmich, D., & Gilson, J. (2001). Eddy transport of heat and thermocline waters in the North Pacific: A key to interannual/decadal climate variability?. Journal of Physical Oceanography, 31(3), 675-687.
    Sasai, Y., Richards, K. J., Ishida, A., & Sasaki, H. (2010). Effects of cyclonic mesoscale eddies on the marine ecosystem in the Kuroshio Extension region using an eddy-resolving coupled physical-biological model. Ocean Dynamics, 60(3), 693-704.
    Shaw, P. T. (1991). The seasonal variation of the intrusion of the Philippine Sea water into the South China Sea. Journal of Geophysical Research: Oceans, 96(C1), 821-827.
    Shchepetkin, A. F., & McWilliams, J. C. (2005). The regional oceanic modeling system (ROMS): a split-explicit, free-surface, topography-following-coordinate oceanic model. Ocean Modelling, 9(4), 347-404.
    Sheu, W. J., Wu, C. R., & Oey, L. Y. (2010). Blocking and westward passage of eddies in the Luzon Strait. Deep Sea Research Part II: Topical Studies in Oceanography, 57(19-20), 1783-1791.
    Smith, W. H., & Sandwell, D. T. (1997). Global sea floor topography from satellite altimetry and ship depth soundings. Science, 277(5334), 1956-1962.
    Tang, T. Y., Tai, J. H., & Yang, Y. J. (2000). The flow pattern north of Taiwan and the migration of the Kuroshio. Continental Shelf Research, 20(4-5), 349-371.
    Tsui, I. F., & Wu, C. R. (2012). Variability analysis of Kuroshio intrusion through Luzon Strait using growing hierarchical self-organizing map. Ocean Dynamics, 62(8), 1187-1194.
    Vélez-Belchí, P., Centurioni, L. R., Lee, D. K., Jan, S., & Niiler, P. P. (2013). Eddy induced Kuroshio intrusions onto the continental shelf of the East China Sea. Journal of Marine Research, 71(1-2), 83-107.
    Weiss, J. (1991). The dynamics of enstrophy transfer in two-dimensional hydrodynamics. Physica D: Nonlinear Phenomena, 48(2-3), 273-294.
    Wu, C. R., & Chiang, T. L. (2007). Mesoscale eddies in the northern South China Sea. Deep Sea Research Part II: Topical Studies in Oceanography, 54(14-15), 1575-1588.
    Wu, C. R., Lu, H. F., & Chao, S. Y. (2008). A numerical study on the formation of upwelling off northeast Taiwan. Journal of Geophysical Research: Oceans, 113(C8).
    Wu, C. R., & Hsin, Y. C. (2012). The forcing mechanism leading to the Kuroshio intrusion into the South China Sea. Journal of Geophysical Research: Oceans, 117(C7).
    Yang, Y., Liu, C. T., Hu, J. H., & Koga, M. (1999). Taiwan Current (Kuroshio) and impinging eddies. Journal of Oceanography, 55(5), 609-617.
    Yang, Y., Liu, C. T., Lee, T. N., & Johns, W. E. (2003). Geostrophic uncertainty and anomalous current structure in association with mesoscale eddies delineated by altimeter observations east of Taiwan. In Satellite Altimetry for Geodesy, Geophysics and Oceanography (pp. 205-211). Springer, Berlin, Heidelberg.
    Zhang, D., Lee, T. N., Johns, W. E., Liu, C. T., & Zantopp, R. (2001). The Kuroshio east of Taiwan: Modes of variability and relationship to interior ocean mesoscale eddies. Journal of Physical Oceanography, 31(4), 1054-1074.
    Zheng, Q., Xie, L., C.-R. Ho. (2017, October). Kuroshio-eddy interaction observed by satellites and moorings. Paper presented at 2017 International Workshop on Mesoscale Processes and Deep Water Circulation in the South China Sea, Qingdao, Shandong, China.

    下載圖示
    QR CODE