簡易檢索 / 詳目顯示

研究生: 張惠菁
Chang, Hui-Ching
論文名稱: 手機高光譜影像應用於顯示器光輻射危害評估
Cellphone-based hyperspectral imaging for light hazard evaluation - A study case of photometric radiation from displays
指導教授: 鄭超仁
Cheng, Chau-Jern
杜翰艷
Tu, Han-Yen
口試委員: 胡國瑞
Hu, Kuo-Jui
黃敬堯
Huang, Ching-Yao
杜翰艷
Tu, Han-Yen
鄭超仁
Cheng, Chau-Jern
口試日期: 2025/01/23
學位類別: 碩士
Master
系所名稱: 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 39
中文關鍵詞: 高光譜影像光譜重建電子顯示器視網膜損傷
英文關鍵詞: Hyperspectral Imaging, Spectral Reconstruction, Electronic Display, Retinal Damage
DOI URL: http://doi.org/10.6345/NTNU202500348
論文種類: 學術論文
相關次數: 點閱:24下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本研究中,我們設計並實現了兩種基於智慧型手機的高光譜成像系統:第一種結合電控平移台,構建推掃式高光譜成像架構;第二種基於深度學習技術,利用 RGB 影像重建高光譜影像,無需外接分光模組。此外,我們開發了名為 VisionSpec 的瀏覽器應用程式,可在行動裝置上即時操作與分析高光譜數據。通過電子顯示器光譜檢測案例研究,我們量化了可見光進入視網膜的輻射劑量,並定義累積劑量指標以評估光暴露對視覺健康的影響。實驗結果顯示,部分電子顯示器的在低劑量光輻射下連續長時間使用 (約6 小時)可能超過安全閾值,對視網膜造成潛在損傷。本研究結果反映出光危害評估的重要性,且與使用者使用情況較為相關,應考慮使用時間以及環境光條件。

    In this study, we designed and implemented two smartphone-based hyperspectral imaging systems. The first system integrates an electronically controlled translation stage to construct a push-broom hyperspectral imaging framework. The second system employs deep learning techniques to reconstruct hyperspectral images from RGB images, eliminating the need for external dispersive modules. Additionally, we developed a browser-based application named VisionSpec, which enables real-time manipulation and analysis of hyperspectral data on mobile devices. Through a case study of spectral measurements on electronic displays, we quantified the radiative dose of visible light reaching the retina and introduced a cumulative dose metric to assess the impact of light exposure on visual health. The experimental results indicate that under low-dose light radiation, prolonged exposure (within six hours) to certain electronic displays may exceed safety thresholds, posing potential risks of retinal damage. These findings highlight the significance of light hazard evaluation, which is closely related to user habits. Factors such as usage duration and ambient light conditions should be carefully considered in risk assessments.

    第一章 緒論 1 1.1 高光譜系統發展及應用 1 1.2 文獻回顧 4 1.2.1 高光譜系統 4 1.2.2 高光譜重建演算法 5 1.2.3 可見光輻射來源的安全性研究 6 1.3 研究目的與動機 11 1.4 論文架構 12 第二章 高光譜系統之工作流程 13 2.1 系統設置 13 2.2 檢測流程 14 2.3 實驗結果 16 2.4 研究限制與未來改進方向 19 第三章 光譜重建演算法 20 3.1 資料集建立 20 3.2 資料預處理 21 3.3 模型架構 21 3.4 評估指標 23 3.5 重建結果 24 第四章 光輻射安全量化分析 26 4.1 光輻射安全之現行國際標準 26 4.2 高光譜成像技術應用於光輻射安全量測方法 32 4.3 顯示器光輻射量危害分析 33 第五章 結論與未來展望 36 參考文獻 37

    [1] A. F. H. Goetz, G. Vane, J. E. Solomon, and B. N. Rock, "Imaging spectrometry for Earth remote sensing," Science 228, 1147-1153 (1985).
    [2] B. Liu, Y. Li, C. Liu, F. Xie, and J.-P. Muller, "Hyperspectral features of oil-polluted sea ice and the response to the contamination area fraction," Sensors 18, 234 (2018).
    [3] T. Adão, J. Hruška, L. Pádua, J. Bessa, E. Peres, R. Morais, and J. J. Sousa, "Hyperspectral imaging: A review on UAV-based sensors, data processing and applications for agriculture and forestry," Remote Sensing 9, 1110 (2017).
    [4] M. J. Khan, H. S. Khan, A. Yousaf, K. Khurshid, and A. Abbas, "Modern trends in hyperspectral image analysis: A review," IEEE Access 6, 14118-14129 (2018).
    [5] B. Lu, P. D. Dao, J. Liu, Y. He, and J. Shang, "Recent advances of hyperspectral imaging technology and applications in agriculture," Remote Sensing 12, 2659 (2020).
    [6] C. Cucci, J. K. Delaney, and M. Picollo, "Reflectance hyperspectral imaging for investigation of works of art: Old master paintings and illuminated manuscripts," Accounts of Chemical Research 49, 2070-2079 (2016).
    [7] G. Lu and B. Fei, "Medical hyperspectral imaging: A review," Journal of Biomedical Optics 19, 010901-010901 (2014).
    [8] I. Hussain and A. K. Bowden, "Smartphone-based optical spectroscopic platforms for biomedical applications: A review," Biomedical Optics Express 12, 1974-1998 (2021).
    [9] N. Sharma, M. S. Waseem, S. Mirzaei, and M. Hefeeda, "MobiSpectral: Hyperspectral imaging on mobile devices," Proceedings of the 29th Annual International Conference on Mobile Computing and Networking, 1-15 (2023).
    [10] J. Yoon, "Hyperspectral imaging for clinical applications," BioChip Journal 16, 1-12 (2022).
    [11] J. Zhang, R. Su, Q. Fu, W. Ren, F. Heide, and Y. Nie, "A survey on computational spectral reconstruction methods from RGB to hyperspectral imaging," Scientific Reports 12, 11905 (2022).
    [12] J. He, Q. Yuan, J. Li, Y. Xiao, D. Liu, H. Shen, and L. Zhang, "Spectral super-resolution meets deep learning: Achievements and challenges," Information Fusion 97, 101812 (2023).
    [13] K. Jiang, Z. Wang, P. Yi, G. Wang, T. Lu, and J. Jiang, "Edge-enhanced GAN for remote sensing image superresolution," IEEE Transactions on Geoscience and Remote Sensing 57, 5799-5812 (2019).
    [14] Y. Cai, J. Lin, Z. Lin, H. Wang, Y. Zhang, H. Pfister, ... and L. Van Gool, "MST++: Multi-stage spectral-wise transformer for efficient spectral reconstruction," Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 745-755 (2022).
    [15] I. A. Pavel, C. M. Bogdanici, V. C. Donica, N. Anton, B. Savu, C. P. Chiriac, ... and S. C. Salavastru, "Computer vision syndrome: An ophthalmic pathology of the modern era," Medicina 59, 412 (2023).
    [16] D. A. León-Figueroa, J. J. Barboza, A. Siddiq, R. Sah, M. J. Valladares-Garrido, S. Adhikari, ... and A. J. Rodriguez-Morales, "Prevalence of computer vision syndrome during the COVID-19 pandemic: A systematic review and meta-analysis," BMC Public Health 24, 640 (2024).
    [17] V. Hipólito and J. M. Coelho, "Blue light and eye damage: A review on the impact of digital device emissions," Photonics 10, 560 (2023).
    [18] E. N. de Gálvez, J. Aguilera, A. Solis, M. V. de Gálvez, J. R. de Andrés, E. Herrera-Ceballos, and A. Gago-Calderon, "The potential role of UV and blue light from the sun, artificial lighting, and electronic devices in melanogenesis and oxidative stress," Journal of Photochemistry and Photobiology B: Biology 228, 112405 (2022).
    [19] A. Cougnard-Gregoire, B. M. Merle, T. Aslam, J. M. Seddon, I. Aknin, C. C. Klaver, ... and C. Delcourt, "Blue light exposure: Ocular hazards and prevention—a narrative review," Ophthalmology and Therapy 12, 755-788 (2023).
    [20] J. K. Bowmaker and H. Dartnall, "Visual pigments of rods and cones in a human retina," The Journal of Physiology 298, 501-511 (1980).
    [21] G. A. Osterberg, "Topography of the layer of rods and cones in the human retina," Acta Ophthalmologica (1935).
    [22] International Commission on Non-Ionizing Radiation Protection, "ICNIRP guidelines on limits of exposure to incoherent visible and infrared radiation," Health Physics 105, 74-96 (2013).
    [23] International Electrotechnical Commission, "Photobiological safety of lamps and lamp systems," IEC 62471 (2006).
    [24] A. Françon, F. Behar-Cohen, and A. Torriglia, "The blue light hazard and its use on the evaluation of photochemical risk for domestic lighting: An in vivo study," Environment International 184, 108471 (2024).
    [25] M. B. Stuart, A. J. McGonigle, M. Davies, M. J. Hobbs, N. A. Boone, L. R. Stanger, ... and J. R. Willmott, "Low-cost hyperspectral imaging with a smartphone," Journal of Imaging 7, 136 (2021).
    [26] E. M. Pechlivani, A. Papadimitriou, S. Pemas, N. Giakoumoglou, and D. Tzovaras, "Low-cost hyperspectral imaging device for portable remote sensing," Instruments 7, 32 (2023).
    [27] I. Jaadane, P. Boulenguez, S. Chahory, S. Carré, M. Savoldelli, L. Jonet, ... & A. Torriglia, "Retinal damage induced by commercial light emitting diodes (LEDs)," Free Radical Biology and Medicine, vol. 84, pp. 373-384, (2015).
    [28] D. van Norren and T. G. Gorgels, "The action spectrum of photochemical damage to the retina: a review of monochromatic threshold data," Photochemistry and Photobiology 87(4), 747-753 (2011).

    無法下載圖示 本全文未授權公開
    QR CODE