研究生: |
陳嘉惠 Chen, Jia-Huei |
---|---|
論文名稱: |
細懸浮微粒資料精確度校正探討 ─ 以臺北地區空氣盒子為例 The Data Accuracy Calibration of Fine Particulate Matter – A Case Study of Airboxes in Taipei |
指導教授: |
張國楨
Chang, Kuo-Chen |
學位類別: |
碩士 Master |
系所名稱: |
地理學系 Department of Geography |
論文出版年: | 2018 |
畢業學年度: | 106 |
語文別: | 中文 |
論文頁數: | 69 |
中文關鍵詞: | 細懸浮微粒 、地理資料探勘 、公民科學 、地理加權迴歸 、熱區分析 |
英文關鍵詞: | Fine Particulate Matter, Geospatial Data Mining, Citizen Science, Geographical Weighted Regression, Hotspot Analysis |
DOI URL: | http://doi.org/10.6345/THE.NTNU.DG.022.2018.A05 |
論文種類: | 學術論文 |
相關次數: | 點閱:342 下載:10 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
2013年國際癌症研究機構正式將空氣污染列為環境致癌物,該報告揭示了一項重要的訊息,即空氣污染物的控制已經刻不容緩。在各項空氣污染物中,最有損人體健康的是懸浮微粒,它能滲透人體呼吸道並深入肺部,若人們長期暴露於懸浮微粒污染的環境中,則會提高肺癌罹患之風險。
故本研究的主要目一,在於探索空氣盒子監測數據以及官方測站監測數據之間的空間相關性與差異性。目的二,利用資料探勘技術與樣條插值函數建立空間內插模型,來表示研究區內的細懸浮微粒污染分布。目的三,透過地理加權迴歸建立空間迴歸模型,藉此校正空氣盒子數據。
研究結果顯示,兩種資料集之間確實存在著高度的空間相關性,而地理加權迴歸的殘差分布具有空間群聚趨勢,最後利用Getis-Ord’s Gi *熱區分析得知,殘差的分布顯著聚集於萬華區與中正區交界處,以及大同區鄰近中山區一帶,然而此誤差群聚分布之現象,其背後必定隱含著某種特殊的土地利用型態和交通模式。
綜納上述各項結果,本研究證實了空氣盒子資料可以藉由空間內插法與地理加權迴歸模型進行校正,儘管殘差的顯著空間聚集現象原因仍有待進一步探究。
In 2013, the International Agency for Research on Cancer formally classified air pollution as an environmental carcinogen. This report brings a momentous meaning that controlling hazardous air pollutants is quite urgent. In the air pollutants, the most detrimental to human health is the particulate matter. It can penetrate the respiratory tract and deep into the lungs and deposited in the body. If people are exposed to particle pollution for a long time, they may have much higher chance of lung cancer than those who do not expose to high PM 2.5.
One of the main purposes of this research is to explore the spatial correlation and variation between data collected by AirBoxes and data collected by EPA monitor stations. The second purpose is the formula a spatial interpolation model to show the distribution of PM2.5 over the study area, based on data mining and spline techniques. The third purpose is to construct a spatial regression model to calibrate data from AirBoxes based on Geographical Weighted Regression.
The results show that there does exist a very high spatial correlation between two data set and residual from GWR displays a spatial clustering pattern. Based on Getis-Ord’s Gi*, the hotspot of residuals are located in Wan-Hwa and TaTung districts with certain unique land use types and traffic patterns. All these show that the original purposes have been achieved and the spatial interpolation and regression models can be used to calibrate AirBox data, though the causes of the high spatial cluster pattern of residual require further study.
一、英文文獻
Anselin, L. (1995). Local indicators of spatial association—LISA. Geographical analysis, 27(2), 93-115.
Brauer, M., Hoek, G., van Vliet, P., Meliefste, K., Fischer, P., Gehring, U., ... & Brunekreef, B. (2003). Estimating long-term average particulate air pollution concentrations: application of traffic indicators and geographic information systems. Epidemiology, 14(2), 228-239.
Briggs, D. J., Collins, S., Elliott, P., Fischer, P., Kingham, S., Lebret, E., ... & Van Der Veen, A. (1997). Mapping urban air pollution using GIS: a regression-based approach. International Journal of Geographical Information Science, 11(7), 699-718.
Brook, R. D., Franklin, B., Cascio, W., Hong, Y., Howard, G., Lipsett, M., ... & Tager, I. (2004). Air pollution and cardiovascular disease. Circulation, 109(21), 2655-2671. Carnes, A., & Ogneva-Himmelberger, Y. (2012). Temporal variations in the distribution of West Nile virus within the United States; 2000–2008. Applied Spatial Analysis and Policy, 5(3), 211-229.
Chang, C. C., Kuo, C. C., Liou, S. H., & Yang, C. Y. (2013). Fine particulate air pollution and hospital admissions for myocardial infarction in a subtropical city: Taipei, Taiwan. Journal of Toxicology and Environmental Health, Part A, 76(7), 440-448.
Chen, L. J., Ho, Y. H., Lee, H. C., Wu, H. C., Liu, H. M., Hsieh, H. H., ... & Lung, S. C. C. (2017). An Open Framework for Participatory PM2. 5 Monitoring in Smart Cities. IEEE Access, 5, 14441-14454.
Cui, Y., Li, Q., Li, Q., Zhu, J., Wang, C., Ding, K., ... & Yang, B. (2017). A Triangular Prism Spatial Interpolation Method for Mapping Geological Property Fields. ISPRS International Journal of Geo-Information, 6(8), 241.
Ding, L., Chen, K. L., Liu, T., Cheng, S. G., & Wang, X. (2015). Spatial-temporal hotspot pattern analysis of provincial environmental pollution incidents and related regional sustainable management in china in the period 1995–2012. Sustainability, 7(10), 14385-14407.
Estellés-Arolas, E., & González-Ladrón-de-Guevara, F. (2012). Towards an integrated crowdsourcing definition. Journal of Information science, 38(2), 189-200.
Fotheringham, A. S., Brunsdon, C., and Charlton, M. (2002). Geographically Weighted Regression: the analysis of spatially vary relationships. West Sussex: John Wiley and Sons Ltd.
Fotheringham, A. S., Charlton, M., and Brunsdon, C. (1998). Geographically weighted regression a natural evolution of the expansion method for spatial data analysis. Environment and Planning A, 30:1905-1927.
Feng, Y., Chen, X., & Liu, Y. (2017). Detection of spatial hot spots and variation for the neon flying squid Ommastrephes bartramii resources in the northwest Pacific Ocean. Chinese Journal of Oceanology and Limnology, 35(4), 921-935.
Getis, A., & Ord, J. K. (1992). The analysis of spatial association by use of distance statistics. Geographical analysis, 24(3), 189-206.
Getis, A., & Aldstadt, J. (2004). Constructing the spatial weights matrix using a local statistic. Geographical analysis, 36(2), 90-104.
Anselin L, Rey S J eds. Perspectives on Spatial Data Analysis. Springer, Berlin Heidelberg. p.147-163.
Goodchild, M. F. (1986). Spatial autocorrelation (Vol. 47). Geo Books.
Gorter, N. (2017). Spatial Clustering of Tuberculosis Mortality in Washington, DC, 1895 (Bachelor's thesis).
Gilbert, N. L., Goldberg, M. S., Beckerman, B., Brook, J. R., & Jerrett, M. (2005). Assessing spatial variability of ambient nitrogen dioxide in Montreal, Canada, with a land-use regression model. Journal of the Air & Waste Management Association, 55(8), 1059-1063.
Harder, R. L., & Desmarais, R. N. (1972). Interpolation using surface splines. Journal of aircraft, 9(2), 189-191.
Hasenfratz, D., Saukh, O., Sturzenegger, S., & Thiele, L. (2012). Participatory air pollution monitoring using smartphones. Mobile Sensing, 1, 1-5.
Holstius, D. M., Pillarisetti, A., Smith, K. R., & Seto, E. (2014). Field calibrations of a low-cost aerosol sensor at a regulatory monitoring site in California. Atmospheric Measurement Techniques, 7(4), 1121-1131.
Hutchinson, M. F. (1995). Interpolating mean rainfall using thin plate smoothing splines. International journal of geographical information systems, 9(4), 385-403.
Kim, Y., Lee, S., & LEE, S. (2010). GIS Based Urban Air Quality Model: The Case of NO2. 12th WTCR, Lisbon, 11-15.
Kibet, K. R. (2014). Spatial temporal analysis of the distribution of pediatric tuberculosis patterns in Kenya (Doctoral dissertation, Kenyatta University).
Koenig, W. D. (1999). Spatial autocorrelation of ecological phenomena. Trends in Ecology & Evolution, 14(1), 22-26.
Krewski, D., Jerrett, M., Burnett, R. T., Ma, R., Hughes, E., Shi, Y., ... & Thun, M. J. (2009). Extended follow-up and spatial analysis of the American Cancer Society study linking particulate air pollution and mortality (No. 140). Boston, MA: Health Effects Institute.
Loomis, D., Grosse, Y., Lauby-Secretan, B., El Ghissassi, F., Bouvard, V., Benbrahim-Tallaa, L., ... & Straif, K. (2013). The carcinogenicity of outdoor air pollution. The lancet oncology, 14(13), 1262-1263.
Luo, Z., Wahba, G., & Johnson, D. R. (1998). Spatial–temporal analysis of temperature using smoothing spline ANOVA. Journal of Climate, 11(1), 18-28.
Mitchel, A. (2005). The ESRI Guide to GIS analysis, volume 2: spartial measurements and statistics. ESRI Guide to GIS analysis.
Moolgavkar, S. H. (2000). Air pollution and daily mortality in three US counties. Environmental Health Perspectives, 108(8), 777.
Ord, J. K., & Getis, A. (1995). Local spatial autocorrelation statistics: distributional issues and an application. Geographical analysis, 27(4), 286-306.
Pope III, C. A., & Dockery, D. W. (2006). Health effects of fine particulate air pollution: lines that connect. Journal of the air & waste management association, 56(6), 709-742.
Ross, Z., English, P. B., Scalf, R., Gunier, R., Smorodinsky, S., Wall, S., & Jerrett, M. (2006). Nitrogen dioxide prediction in Southern California using land use regression modeling: potential for environmental health analyses. Journal of Exposure Science and Environmental Epidemiology, 16(2), 106-114.
Sajid, A. H., Rudra, R. P., & Parkin, G. (2013). Systematic evaluation of kriging and inverse distance weighting methods for spatial analysis of soil bulk density. Canadian Biosystems Engineering, 5, 1-1.
Schumaker, L. (2007). Spline functions: basic theory. Cambridge University Press.
Silvertown, J. (2009). A new dawn for citizen science. Trends in ecology & evolution, 24(9), 467-471.
Sîrbu, A., Becker, M., Caminiti, S., De Baets, B., Elen, B., Francis, L., ... & Molino, A. (2015). Participatory patterns in an international air quality monitoring initiative. PloS one, 10(8), e0136763.
Storksdieck, M., Shirk, J., Cappadonna, J., Domroese, M., Göbel, C., Haklay, M., ... & Vohland, K. (2016). Associations for Citizen Science: Regional Knowledge, Global Collaboration. Citizen Science: Theory and Practice, 1(2).
Sui, D. Z., & Hugill, P. J. (2002). A GIS-based spatial analysis on neighborhood effects and voter turn-out:: a case study in College Station, Texas. Political Geography, 21(2), 159-173.
Tait, A., Henderson, R., Turner, R., & Zheng, X. (2006). Thin plate smoothing spline interpolation of daily rainfall for New Zealand using a climatological rainfall surface. International Journal of Climatology, 26(14), 2097-2115.
Tobler, W. R. (1970). A computer movie simulating urban growth in the Detroit region. Economic geography, 46(sup1), 234-240
Tsai, S. S., & Yang, C. Y. (2014). Fine particulate air pollution and hospital admissions for pneumonia in a subtropical city: Taipei, Taiwan. Journal of Toxicology and Environmental Health, Part A, 77(4), 192-201.
Vukovic, M., & Bartolini, C. (2010). Towards a research agenda for enterprise crowdsourcing. Leveraging applications of formal methods, verification, and validation, 425-434.
Zheng, X., & Basher, R. (1995). Thin-plate smoothing spline modeling of spatial climate data and its application to mapping South Pacific rainfalls. Monthly weather review, 123(10), 3086-3102.
二、中文文獻
王證權(2001)。亞洲氣膠特性實驗-台灣北海岸春季氣膠化學特性,國立中央大學環境工程研究所碩士論文。
張順欽、陳熙灝、李崇德(1998) :〈台灣地區空氣品質監測現況與運轉經驗〉,《工業污染防治季刊》,67:100-123。
鄭尊仁、李崇德、周崇光、吳焜裕、陳保中、郭育良、 ... 、趙馨(2001)。空氣品質標準檢討評估,細懸浮微粒空氣品質標準研訂計畫,環保署/國科會空污防制科研合作計畫。NSC 99-EPA-M-001-001。
三、網站資料
行政院環保署(2017):〈空氣品質標準〉,《行政院環保署主管法規查詢系統》。https://oaout.epa.gov.tw/law/LawContent.aspx?id=FL015351&KeyWord=%E7%B4%B0%E6%87%B8%E6%B5%AE%E5%BE%AE%E7%B2%92。(2017/10/10 瀏覽)
行政院環保署(2017):〈空氣盒子簡問簡答〉,《行政院環保署空氣品質監測網》。https://taqm.epa.gov.tw/taqm/tw/b0905.aspx。(2017/10/10 瀏覽)
National Audubon Society (2017) :〈History of the Christmas Bird Count〉,《The Website of National Audubon Society》。http://www.audubon.org/history-christmas-bird-count。(2017/10/10 瀏覽)
Esri.(2018):〈How Spline works〉,《Tool Reference》。http://pro.arcgis.com/en/pro-app/tool-reference/3d-analyst/how-spline-works.htm。(2017/10/10 瀏覽)