研究生: |
游揚升 You, Yang-Sheng |
---|---|
論文名稱: |
316L不銹鋼與Inconel 600合金異質銲接之機械性質與抗腐蝕特性研究 Mechanical properties and corrosion resistance of dissimilar welded 316L stainless steel and Inconel 600 alloy |
指導教授: |
程金保
Cheng, Chin-Pao 鄭淳護 Cheng, Chun-Hu |
學位類別: |
碩士 Master |
系所名稱: |
機電工程學系 Department of Mechatronic Engineering |
論文出版年: | 2017 |
畢業學年度: | 105 |
語文別: | 中文 |
論文頁數: | 114 |
中文關鍵詞: | 摩擦攪拌銲接 、雙面式 、Inconel 600合金 、316L不銹鋼 、異質接合 、殘留應力 |
英文關鍵詞: | friction stir welding, double sided type, Inconel 600 alloy, 316L stainless steel, dissimilar welded, residual stress |
DOI URL: | https://doi.org/10.6345/NTNU202203078 |
論文種類: | 學術論文 |
相關次數: | 點閱:196 下載:5 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
壓水式反應器的管路設備必須承受高溫高壓外,亦受水的化學作用與腐蝕的影響,因此經常使用具有高溫耐蝕性及高溫機械性質的不銹鋼或鎳基超合金做為結構件或管件材料,在較嚴苛的環境使用鎳基合金,而壓力槽體出水口則使用碳鋼或低合金鋼等材料,以降低成本。不同部位的異種金屬通常使用惰氣鎢極電弧銲接法接合,由於兩種合金之間存在組織、物理及機械性質等差異,在異質銲接後容易在界面處產生殘留應力而導致破壞。
本研究使用雙面式摩擦攪拌銲接技術與惰氣鎢極電弧銲接技術用於Inconel 600合金與316L 不銹鋼的異質接合,摩擦攪拌銲接法利用含鈷之碳化鎢製作攪拌頭,攪拌頭傾斜角1°、轉速設定800 rpm、進給速率50 mm/min,可以成功接合並無缺陷產生,惰氣鎢極電弧銲接則比較不同電流大小,並探討添加AMS 5786填料與否對銲道造成的影響。將各成功接合的試片進行顯微組織及機械性質之影響,並進行元素分析,最後進行殘留應力量測及抵抗沿晶腐蝕能力分析。
實驗結果顯示,惰氣鎢極電弧銲接之接合件銲道硬度、拉伸強度及伸長率都明顯下降,拉伸斷裂點位於銲道熔融區;而利用摩擦攪拌銲接之接合件銲道硬度、拉伸強度及伸長率都顯著的提升,拉伸斷裂點位於316L不銹鋼母材。顯示摩擦攪拌銲接具有優良的接合效果,並且可以降低銲件之殘留應力,但是在攪拌區進給邊的抵抗沿晶腐蝕能力則會下降。另外可以觀察到在異質接合後,Inconel 600合金在硝酸中的腐蝕速率高於316L 不銹鋼。
Pressurized water reactor have to withstand extremely high temperature, high pressure, and the chemical reactions and decay effects cause by water.
That is why the construction parts and pipe fitting are usually constructed by stainless steel and nickel base alloy, taking the advantages of their mechanical properties of resistance from heat and corrosion. Nickel-based alloy are used to constructed of nuclear reactors, and carbon steel or low alloy steel are used to constructed of reactor pressure vessel outlet to reduce costs. Gas tungsten arc welding is normally applied to the dissimilar alloy assembly. However, the dissimilar materials welding parts may easily trigger unfavorable destruction caused by the residual stresses at the joint because two alloys contain different organizational, physical and mechanical properties.
In this study, we used GTAW process and double-sided friction stir welding to join the dissimilar materials of Inconel 600 alloy and 316L stainless steel. Cobalt-containing tungsten carbide stir rod was used for FSW of Inconel 600 alloy and 316L stainless steel, and a defect-free weld was successfully produced. A 1° tilt was applied to the stir rod during FSW, and the welding parameters used were a rotational speed of 800 rpm and a travel speed of about 50 mm/min. Using AMS 5786 filler and without filler in GTAW to compare the effects of different currents on the weldment. The specimens were analyzed for their microstructure, mechanical property and elemental analysis followed by the dissimilar welding of GTAW and double-sided type FSW. Determine whether the weldment is prone to stress corrosion cracking by measurement residual stress and analyzed resistance of intergranular corrosion.
Experimental results showed that the microhardness of fusion zone, tensile strength and elongation of GTAW dissimilar joint decreased apparently and the tensile fracture site was at the fusion zone of welding joint. However, an excellent joining effect was achieved by FSW, the microhardness of stir zone, tensile strength and elongation of FSW dissimilar joint have been improved. The tensile fracture site was located at the 316L stainless steel base metal, also indicating the superior joining effects by this welding approach. Using FSW process can reduce the residual stress of the weldment but the resistance of intergranular corrosion are decreased in advancing side of stir zone. It can also be observed that the corrosion rate of Inconel 600 alloy is higher than 316L stainless steel in nitric acid after dissimilar welded.
參考文獻
【1】J. Gorman, S. Hunt, P. Riccardella, and G.A. White, “PWR Reactor Vessel Alloy 600 Issues”, ASME Ch44, pp. 1-26, 2009.
【2】X. Zhong, S.C. Bali, T. Shoji, “Effects of dissolved hydrogen and surface condition on the intergranular stress corrosion cracking initiation and short crack growth behavior of non-sensitized 316 stainless steel in simulated PWR primary water” Corrosion Science, Vol.118, pp.143-157, 2017.
【3】T. Poulain, J. Mendez, G. Henaff, L.D. Baglion, “Characterization of Damage During Low Cycle Fatigue of a 304L Austenitic Stainless Steel as a Function of Environment (Air, PWR Environment) and Surface Finish (Polished, Ground)”, Procedia Engineering, Vol.160, pp.123-130, 2016.
【4】A. Joseph, S.K. Rai, T. Jayakumar , N. Murugan, “Evaluation of residual stresses in dissimilar weld joints”, International Journal of Pressure Vessels and Piping, Vol.82, pp.700-705, 2005.
【5】C.H. Lee, K.H. Chang, “Temperature fields and residual stress distributions in dissimilar steel butt welds between carbon and stainless steels”, Applied Thermal Engineering, Vol.45-46, pp.33-41, 2012.
【6】R. Mouginot and H. Hännine, “Microstructures of nickel base alloy dissimilar metal weld”, Aalto University, Finland, 2013.
【7】S.S. Hwang, “Review of PWSCC and mitigation management strategies of Alloy 600 materials of PWRs”, Journal of Nuclear Materials , Vol.443, pp.321-330, 2013.
【8】Y.S. Lim, H.P. Kim, S.S. Hwang, “Microstructural characterization on intergranular stress corrosion cracking of Alloy 600 in PWR primary water environment”, Journal of Nuclear Materials, Vol.440, pp.46-54, 2013.
【9】J.H. Suh, J.K. Shin, S.J. L Kang, Y.S. Lim, I.H. Kuk, J.S. Kim, “Investigation of IGSCC behavior of sensitized and laser-surface-melted Alloy 600”, Materials Science and Engineering: A, Vol.254, pp.67-75, 1998.
【10】F. Léonard, “Study of stress corrosion cracking of Alloy 600 in high temperature high pressure water”, PhD thesis of University of Manchester, 2010.
【11】G.S. Was, H.H. Tischner, R.M. Latanision, “The Influence of Thermal Treatment on the Chemistry and Structure of Grain Boundaries in Inconel 600”, Metallurgical Transactions A,Vol.12,pp.1397-1408,1981.
【12】M. Mochizuki, “Control of welding residual stress for ensuring integrity against fatigue and stress–corrosion cracking”, Nuclear Engineering and Design, Vol.237, pp.107-123, 2007.
【13】Y.D. Koo, K.H. Yoo, M.G. Na, “Estimation of residual stress in welding of dissimilar metals at nuclear power plants using cascaded support vector regression”, Nuclear Engineering and Technology, 2017.
【14】K.D. Ramkumar, S.D. Patel, S.S. Praveen, D.J. Choudhury, P.Prabaharan, N. Arivazhagan, M.A. Xavior, “Influence of filler metals and welding techniques on the structure–property relationships of Inconel 718 and AISI 316L dissimilar weldments”, Materials and Design, Vol.62, pp.175–188, 2014.
【15】M. Sireesha a, V. Shankar b, S.K. Albertb, S. Sundaresan, “Microstructural features of dissimilar welds between 316LN austenitic stainless steel and alloy 800”, Materials Science and Engineering A, Vol.292, pp.74–82, 2000.
【16】M. Meisnar, A. Vilalta-Clemente, M. Moody, K. Arioka, S.Lozano-Perez, “A mechanistic study of the temperature dependence of the stress corrosion crack growth rate in SUS316 stainless steels exposed to PWR primary water”, Acta Materialia, Vol.114, pp.15-24, 2016.
【17】X. Xie, D. Ning, B. Chen, S. Lu, J. Sun, “Stress corrosion cracking behavior of cold-drawn 316 austenitic stainless steels in simulated PWR environment”, Corrosion Science, Vol.112, pp.576-584, 2016.
【18】J.R. Crum and R.C. Scarberry, “Corrosion Testing of INCONEL*Alloy 690 for PWR Steam Generators”, journal of materials for energy systems, Vol.4, pp.125-130, 1982.
【19】Y.S. Sato, P. Arkom, H. Kokawa, T.W. Nelson, R.J. Steel, “Effect of microstructure on properties of friction stir welded Inconel Alloy 600”, Materials Science and Engineering: A ,Vol.477, pp.250–258, 2008.
【20】李名言,「鎳基合金材質特性介紹」,中工高雄會刊,第21卷,第1期,民102年。
【21】E. Akca, A. Gursel, “A Review on Superalloys and IN718 Nickel-Based INCONEL Superalloy”, Periodicals of Engineering and Natural Sciences, Vol. 3, pp.15-27, 2015.
【22】Inconel Alloy 600, Special Metals Corporation, 2008.
【23】李宗運,“應變速率及溫度在316L不鏽鋼動態剪切變形與破壞行為之效應分析”,國立成功大學,碩士學位論文,2010。
【24】316/316L STAINLESS STEEL, AK Steel Corporation, 2013.
【25】S. Kou, Welding Metallurgy, John Wiley & Sons, USA, 2003.
【26】周長彬、蘇程裕、蔡丕椿、郭央諶 編著,銲接學,全華圖書股份有限公司,2007年。
【27】http://www.mmsonline.com/blog/post/friction-stir-welding-for-sls-rocket.
【28】Y. Li, L. E. Murr and J. C. McClure, “Flow Visualization and Residual Microstructures Associated with the Friction-Stir Welding of 2024 Aluminum Alloy to 6061 Aluminum Alloy”, Materials Science and Engineering: A, Vol.271, pp. 213-223, 1999.
【29】謝興達,“摩擦攪拌銲接的參數影響與創新設計研究”,國立成功大學,博士學位論文,2009。
【30】K. Elangovan, V. Balasubramanian , “Influences of pin profile and rotational speed of the tool on the formation of friction stir processing zone in AA2219 aluminium alloy”, Materials Science and Engineering: A, Vol.459, pp.7-18, 2007.
【31】K. Elangovan, V. Balasubramanian , “Influences of tool pin profile and tool shoulder diameter on the formation of friction stir processing zone in AA6061 aluminium alloy”, Materials & Design, Vol.29, pp.362-373, 2008.
【32】R.W. Fonda, J.F. Bingert and K.J. Colligan, “Development of grain structure during friction stir welding”, Scripta Materialial, Vol. 51, pp.243-248, 2004.
【33】権湧宰、重松一典、斎藤尚文(2002年),「摩擦撹拌プロセスを利用した超微細結晶粒アルミウム合金の作製」,日本金属學会誌,第66卷第12号,1325-1332。
【34】N.P. Colegrove, “3-dimensional Flow and Thermal Modelling of the Friction Stir Welding Process”, Proceedings of the 2nd International Symposium on Friction Stir Welding, Gothenburg, Sweden, 2000.
【35】M. Song and R. Kovacevic, “Thermal modeling of friction stir welding in a moving coordinate system and its validation”, International Journal of Machine Tools & Manufacture, Vol.43, pp.605-615, 2003.
【36】篠田剛,「Friction Stir Welding(摩擦撹拌接合)の基礎と实際第2回」,溶接技術,8月号,138-142,2001年。
【37】A.P. Reynolds, Wei Tang, T. Gnaupel-Herold, H. Prask, “Structure, properties, and residual stress of 304L stainless steel friction stir welds”, Scripta Materialia, Vol.48, pp.1289-1294, 2003.
【38】岡村久宣、青田欣也、坂本征彥、江角昌邦、池內建二,「アルミニウム合金摩擦撹拌接合部の酸化物の挙動及びその機械的特性に及ばす影響」,溶接學会論文集,第19卷,第3号,446-456,2001年。
【39】W.M. Thomas, et al. Friction stir butt welding. International Patent Application No. PCT/GB92102203 and Great Britain Patent Application No. 9125978.8; 1991.
【40】經濟部工業局,103年度專案計畫期末執行成果報告,2014 年。
【41】敖仲寧,參加第十屆摩擦攪拌銲接國際研討會 The 10F TWI FSW Symposium 之報告,2014 年。
【42】http://img.jdzj.com/UserDocument/2015a/aweatw/Document/20150718124814.pdf.
【43】http://www.iws.fraunhofer.de/en/business_fields/joining/special_joining_technologies/products_projects/friction_stir_welding_aerospace_applications.html.
【44】http://appleinsider.com/articles/12/10/24/apple-slims-down-imac-40-with-friction-stir-welding-ditching-the-disc-drive.
【45】C.D. Sorensen, “Progress In Friction Stir Welding of High Temperature Materials”, 14th International Offshore and Polar Engineering Conference, Vol. 4, , pp. 8–14, 2004.
【46】M.B. Bilgin, C. Meran, “The effect of tool rotational and traverse speed on friction stir weldability of AISI 430 ferritic stainless steels”, Materials and Design, Vol.33, pp.376-383, 2012.
【47】H. Fujii, Y. Sun and H. Kato, “Microstructure and mechanical properties of friction stir welded pure Mo joints”, Scripta Materialia, Vol.64, pp.657-660, 2011.
【48】P.D. Edwards, M. Ramulu, “Material flow during friction stir welding of Ti-6Al-4V”, Journal of Materials Processing Technology, Vol.218, pp.107-115, 2015.
【49】Y.S. Sato, Yoshito Nagahama, Sergey Mironov, Hiroyuki Kokawa,Seung Hwan C. Park and Satoshi Hirano, “Microstructural studies of friction stir welded Zircaloy-4”, Scripta Materialia, Vol.67, pp.241-244, 2012.
【50】T. Chen, “Process parameters study on FSW joint of dissimilar metals for aluminum–steel”, Journal of Materials Science, Vol.44, pp.2573-2580, 2009.
【51】S. Noh, M. Ando, H. Tanigawa, H. Fujii, A. Kimura, “Friction stir welding of F82H steel for fusion applications”, Journal of Nuclear Materials, Vol.478, pp.1-6, 2016.
【52】H. Dawson, M. Serrano, S. Cater, N. Iqbal, L. Almásy, Q. Tian, E. Jimenez-Melero, “Impact of friction stir welding on the microstructure of ODS steel”, Journal of Nuclear Materials, Vol.486, pp.129-137, 2017.
【53】H. Dawson , M. Serrano, R. Hernandez, S. Cater , E. Jimenez-Meleroa, “Mechanical properties and fracture behaviour of ODS steel friction stir welds at variable temperatures”, Materials Science and Engineering: A, Vol.693, pp.84-92, 2017.
【54】L. Cederqvist, T. Öberg, “Reliability study of friction stir welded copper canisters containing Sweden's nuclear waste”, Reliability Engineering & System Safety, Vol.93, pp.1491-1499, 2008.
【55】劉文光、蔡富豐、黃秉修、張仁坤,赴瑞典、芬蘭考察放射性廢棄物營運設施,台灣電力公司出國報告,民國103 年。
【56】EPRI,A Review of Advanced Welding Technology and Applications for Nuclear Power Applications,2014.
【57】C.D. Sorensen and T.W. Nelson, “Friction Stir Welding and Processing”, Edit by R. S. Mishra and M. W.Mahoney, ASM International, pp.111-121, 2007.
【58】K.H. Song, , H. Fujii, K. Nakata, “Effect of welding speed on microstructural and mechanical properties of friction stir welded Inconel 600”, Materials & Design,Vol.30, pp.3972-3978, 2009.
【59】K.H. Song and K. Nakata, “Mechanical Properties of Friction-Stir-Welded Inconel 625 Alloy”, Materials Transactions, Vol. 50, pp.2498-2501, 2009.
【60】K.H. Song, K. Nakata, “Effect of precipitation on post-heat-treated Inconel 625 alloy after friction stir welding”, Materials and Design, Vol.31, pp.2942–2947, 2010.
【61】K.H. Song, K. Nakata, “Microstructural and mechanical properties of friction-stir-welded and post-heat-treated Inconel 718 alloy”, Journal of Alloys and Compounds, Vol. 505, pp.144–150, 2010.
【62】M.P. Meshram, B.K. Kodli, S.R. Dey, “Mechanical Properties and Microstructural Characterization of Friction Stir Welded AISI 316 Austenitic Stainless Steel”, Procedia Materials Science, Vol.5, pp.2376-2381, 2014.
【63】M.P. Meshram, B.K. Kodli, S.R. Dey, “Friction Stir Welding of Austenitic Stainless Steel by PCBN Tool and its Joint Analyses”, Procedia Materials Science, Vol.6, pp.135-139, 2014.
【64】S.S. Kumar, N. Murugan, K.K. Ramachandran, “Influence of tool material on mechanical and microstructural properties of friction stir welded 316L austenitic stainless steel butt joints”, International Journal of Refractory Metals and Hard Materials, Vol.58, pp.196-205, 2016.
【65】E.A. Starke, J.T. Staley, “Application of modern aluminum alloys to aircraft structure”, Progress in Aerospace Sciences, Vol. 32, pp. 131–172, 1996.
【66】W.F. Smith, “Structure and Properties of Engineering Alloys”, McGraw-Hill, New York, 1993.
【67】J.N. Dupont, J.C. Lippold, S.D. Kiser, “Welding Metallurgy and Weldability of Ni-base Alloys”, Wiley Hoboken, p. 440, 2009.
【68】J.C. Lippold, J.W. Sowards, G.M. Murray, B.T. Alexandrov, A.J. Ramirez, “Weld solidification cracking in solid-solution strengthened Ni-base filler metals”, Hot Cracking Phenomena in Welds II, Springer, Berlin, pp. 147–170, 2008.
【69】M. Fazel-Najafabadi, S.F. Kashani-Bozorg, A. Zarei-Hanzaki, “Joining of CP-Ti to 304 stainless steel using friction stir welding technique”, Materials & Design,Vol.31,pp.4800-4807, 2010.
【70】T. Chen, “Process parameters study on FSW joint of dissimilar metals for aluminum–steel”, Journal of Materials Science, Vol.44, pp.2573-2580, 2009.
【71】Q. Zheng, X. Feng, Y. Shen, G. Huang, P. Zhao, “Effect of plunge depth on microstructure and mechanical properties of FSW lap joint between aluminum alloy and nickel-base alloy”, Journal of Alloys and Compounds, Vol.695, pp.952-961, 2017.
【72】K. Ishida, , Y. Gao, K. Nagatsuka, M. Takahashi, K. Nakata, “Microstructures and mechanical properties of friction stir welded lap joints of commercially pure titanium and 304 stainless steel”, Journal of Alloys and Compounds, Vol.630, pp.172-177, 2015.
【73】K.H. Song , W.Y. Kima, K. Nakata, “Evaluation of microstructures and mechanical properties of friction stir welded lap joints of Inconel 600/SS 400”, Materials & Design,Vol.35, pp.126-132, 2012.
【74】M. Jafarzadegan, A.H. Feng, A. Abdollah-zadeh , T. Saeid, J. Shen, H. Assadi, “Microstructural characterization in dissimilar friction stir welding between 304 stainless steel and st37 steel”, Materials Characterization,Vol.74, pp.28-41, 2012.
【75】S.J. Barnes, A. Steuwer, S. Mahawish, R. Johnson, P.J. Withers, “Residual strains and microstructure development in single and sequential double sided friction stir welds in RQT-701 steel”, Materials Science and Engineering A, Vol.492, pp.35–44, 2008.
【76】N.A. McPherson, A.M. Galloway, S.R. Cater and S.J. Hambling, “Friction stir welding of thin DH36 steel plate”,Science and Technology of Welding and Joining, Vol.18, pp.441-450, 2013.
【77】S. Klingensmith, J.N. Dupont, and A.R. Marder, “Microstructural characterization of a double-sided friction stir weld on a superaustenitic stainless steel”, Welding Journal, pp.77-s~85-s, 2005.
【78】http://www.matweb.com/
【79】鄧建龍、姚潔宜、張茂男,「X光繞射分析在半導體工業上的應用」,奈米通訊,第十五卷,第四期,頁6-9,2008年。
【80】許樹恩、吳泰伯 編著,X光繞射原理與材料結構分析,中國材料科學學會,1993年。
【81】ASTM,Standard Designation A262-Practice A-F Reapproved, pp. 1–16, 2008.
【82】S. Jana, “Effect of heat input on the HAZ properties of two duplex stainless steels” , Journal of Materials Processing Technology, Vol.33, pp.247-261, 1992.
【83】Y.S. Lim, H.P. Kim, J.H. Han, J.S. Kim, H.S. Kwon, “Influence of laser surface melting on the susceptibility to intergranular corrosion of sensitized Alloy 600”, Corrosion Science, Vol.43, pp.1321-1335, 2001.
【84】王朝正、鄭偉鈞、程金保,鎳基合金與不銹鋼異質銲接之應力腐蝕裂痕及高溫疲勞特性分析,行政院原子能委員會期末報告,民國104年。
【85】A.R. Darvazi, M. Iranmanesh, “Prediction of asymmetric transient temperature and longitudinal residual stress in friction stir welding of 304L stainless steel”, Materials and Design, Vol.55, pp.812-820, 2014.
【86】S.H.C. Park, Y.S. Sato, H. Kokawa, K. Okamoto, S. Hirano, M. Inagaki, “Corrosion resistance of friction stir welded 304 stainless steel”, Scripta Materialia, Vol.51, pp.101-105, 2004.
【87】T.F. Wu, T.P. Cheng, W.T. Tsai, “Effect of electrolyte composition on the electrochemical potentiokinetic reactivation behavior of Alloy 600”, Journal of Nuclear Materials,Vol.295, pp.233-243, 2001.
【88】M. Abdallah, B.A.AL Jahdaly, M.M. Salem, A. Fawzy, E.M. Mabrouk, “Electrochemical Behavior of Nickel Alloys and Stainless Steel in HNO3 using Cyclic Voltammetry Technique”, Journal of Materials and Environmental Sciences,Vol.8, pp.1320-1327, 2017.