研究生: |
林庭佑 Lin, Ting-Yu |
---|---|
論文名稱: |
阻力運動對史楚普作業表現及血漿腎上腺素水平之影響:四情境交叉設計隨機對照試驗 Effects of Resistance Exercise on Stroop Task Performance and Plasma Epinephrine Level: A Four-Arm Crossover Randomized Controlled Trial |
指導教授: |
洪聰敏
Hung, Tsung-Min 劉宏文 Liu, Hung-Wen |
口試委員: |
洪巧菱
Hung, Chiao-Ling 黃崇儒 Huang, Chung-Ju 蔡佳良 Tsai, Chia-Liang 洪聰敏 Hung, Tsung-Min 劉宏文 Liu, Hung-Wen |
口試日期: | 2024/01/03 |
學位類別: |
博士 Doctor |
系所名稱: |
體育與運動科學系 Department of Physical Education and Sport Sciences |
論文出版年: | 2024 |
畢業學年度: | 112 |
語文別: | 英文 |
論文頁數: | 111 |
中文關鍵詞: | 執行功能 、阻力訓練 、註冊報告 、腎上腺素 、隨機對照試驗 |
英文關鍵詞: | Executive function, Resistance training, Registered report, Adrenaline, RCT |
研究方法: | 實驗設計法 、 註冊報告 、 隨機對照試驗 |
DOI URL: | http://doi.org/10.6345/NTNU202400950 |
論文種類: | 學術論文 |
相關次數: | 點閱:147 下載:8 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
註: 此摘要按照CONSORT 2010交叉設計隨機對照試驗報告指南呈現 (Dwan et al., 2019, Table 2)。
研究目的
1. 確認阻力運動對史楚普 (Stroop) 作業表現的急性效應。
2. 確認急性阻力運動對史楚普作業表現的線性時間效應。
3. 探討史楚普作業表現的變化是否與血漿腎上腺素的變化相關聯。
4. 探索急性阻力運動對史楚普任務表現的線性強度效應。
方法
研究設計
此博士論文為一個四情境交叉設計隨機對照試驗的註冊報告 (registered report) 與其次要分析 (secondary analyses)。
參與者
過去6個月內至少每週進行一次阻力訓練,年齡在18至40歲之間的健康男性
介入
在運動情境下,參與者進行了包含槓鈴蹲舉、推舉和硬舉的循環 (circuit) 阻力運動,每組5下、一個動作共3組,三個動作都做過一遍後從蹲舉開始第二輪,總共進行三個循環,並在每組運動及組間休息3分鐘。在三種不同的運動介入中,除了強度外,所有訓練參數保持一致。三組的負荷分別設定為高、中、低強度,相當於1RM的78%、72%和65%。在對照情境下,參與者閱讀與運動相關的書籍約四十分鐘,時長約與運動介入相當。
依變項量測
認知量測:本研究測量了阻力運動和對照情境之間在多個依變項上的差異,包括史楚普一致與不一致情境反應時間的變化、史楚普一致反應時間與簡單反應時間的變化,以及史楚普效應的變化。
生化指標:分析指標是阻力運動情境相較於對照情境的腎上腺素水平變化差異。
隨機分派
參與者被分配了兩個獨立的隨機塊狀 (random blocked) 序列,以避免參與者有兩倍的機率在第一次運動介入時進行特定的強度。第一個序列採用的隨機區塊大小為3和6,用於確定不同強度阻力運動的順序。這一序列採用拉丁方設計,將可能的序列數量從六減少至三。第二個序列採用的隨機區塊大小為4和8,來確定哪一次來實驗室(第3、4、5或6次)為對照情境。
遮盲
由於研究中運動介入的性質,參與者、結果評估者和實驗者的無法遮盲 (masking/ blinding)。然而,所有認知表現的測量均採用電腦進行,從而降低人為判斷的影響。
結果
招募狀況、隨機分派與納入分析的參與者數
共招募了31名參與者,且所有人均符合參與條件。在這些人中,有28人完成了所有的實驗流程,並被納入依計畫書分析 (per-protocol analysis)。
分析結果:
1. 整體而言,在運動後1小時內,與對照情境相比,急性阻力運動顯著降低了校正過正確率後的史楚普一致性反應時間(平均差異:-12.2毫秒;95%信賴區間:-17.4至-7.1;p < .001;dmatched = -0.256)和不一致性反應時間(平均差異:-20.3毫秒;95%信賴區間:-36.4至-4.1;p = .014;dmatched = -0.135),以及史楚普一致性反應時間和簡單反應時間之間的差異(平均差異:-13.8毫秒;95%信賴區間:-20.7至-7.0;p < .001;dmatched = -0.216。然而,在運動介入情境與對照情境的比較中,簡單反應時間(平均差異:1.6毫秒;95%信賴區間:-3.5至6.7;p = .539;dmatched = 0.034)和史楚普效應(平均差異:-8.0毫秒;95%信賴區間:-21.9至5.8;p = .253;dmatched = -0.062)在統計上並未達顯著。
2. 結果顯示,校正過正確率後的一致性反應時間有線性時間效應:rrm = .114,p = .045,95% 信賴區間: 0.002至0.223。這個重複測量相關係數(.114,repeated measures correlation coefficient)表示阻力運動的正面效果在介入後10至55分鐘之間逐漸衰減。然而,史楚普不一致性情境、史楚普效應、史楚普一致性反應時間與簡單反應時間之間的差異,以及簡單反應時間的重複測量相關性並未達到統計上的顯著。
3. 未發現血漿腎上腺素變化與任何認知指標之間存在顯著的線性或倒U型關係。
4. 不同阻力運動強度的效果沒有顯示出明顯的差異。
不良事件
無嚴重不良事件。
試驗狀態
已結束。
結論
本研究顯示了單次槓鈴阻力運動對需要抑制的認知作業的正面影響。此研究觀察到了時間層面的效果,發現了認知表現的提升可能在運動10分鐘後最為明顯。這些研究發現指出,於在提升肌力的自由重量、多關節、結構性阻力運動訓練後1至1.5小時內安排具有認知挑戰的任務,或可以最大化其對肌力和認知的益處。關於血漿腎上腺素與認知表現的關係,本研究未發現急性阻力運動後血漿腎上腺素水平的變化與急性阻力運動後的任何認知表現變化間有顯著關聯。
研究註冊
此研究計畫在第一階段註冊報告被接受後 (Lin, Cheng, et al., 2023) 提交至ClinicalTrials.gov (NCT05407259)。此研究計畫的註冊報告部分也公開於Open Science Framework,網址為:https://osf.io/ehvyf。
研究經費
此研究由國立臺灣師範大學支持。
Note: This abstract was reported according to CONSORT 2010 reporting checklist for crossover randomized controlled trials (Dwan et al., 2019, Table 2).
Purpose
1. To confirm the acute effect of resistance exercise on Stroop task performance.
2. To confirm the linear temporal effect of acute resistance exercise on Stroop task performance.
3. To investigate if changes in Stroop task performance are associated with changes in plasma epinephrine.
4. To explore the linear intensity effect of acute resistance exercise on Stroop task performance.
Methods
Trial design
This dissertation comprises a registered report a four-arm crossover randomized controlled trial and its secondary analyses.
Participants
Healthy males, aged between 18-40 years, who have engaged in resistance training at least once a week for the preceding 6 months.
Interventions
During the exercise condition, participants performed three circuits of resistance exercise consisting of barbell back squats, presses, and deadlifts, for 5 repetitions and 3 sets of each exercise, with 3-minute rest intervals between exercises and sets. In the three different exercise interventions, all training parameters were kept consistent except for intensity. The loads for the sets were set at high, moderate, and low intensity, corresponding to 78% of 1RM, 72% of 1RM, and 65% of 1RM, respectively. In the control condition, participants were asked to spend a similar amount of time (approximately 40 minutes) reading a book related to exercise.
Outcome
Cognitive Outcomes: This study evaluated the differences between the resistance exercise and control conditions in several dependent variables, including changes in Stroop congruent reaction time, Stroop incongruent reaction time, the difference between Stroop congruent reaction time and simple reaction time, and the Stroop effect.
Biomarker Analysis: The analytic metric was the difference in epinephrine levels resulting from the resistance exercise compared to the control conditions.
Randomization
Two separate block randomization sequences were assigned to participants to prevent them from encountering the same intensity twice as their first exercise intervention. The first sequence, with block sizes of 3 and 6, was implemented to determine the order of different intensity resistance exercises, utilizing a Latin square design to reduce the number of possible sequences from six to three. The second sequence, with block sizes of 4 and 8, was used to select one of the visits (either visit 3, 4, 5, or 6) as the control condition.
Blinding (masking)
Due to the nature of exercise interventions in our study, blinding of participants, outcome assessors, and experimenters was not feasible. Nevertheless, all measurements of cognitive performance were conducted using computerized methods, the influence of human judgment was minimized.
Results
Recruitment, numbers randomized, numbers analyzed
A total of 31 participants were recruited and all were eligible. Of these, 28 completed all experimental sessions and were included in the per-protocol analyses.
Outcome
1. Overall, acute resistance exercise significantly reduced the accuracy-adjusted Stroop congruent (Mean difference: -12.2 ms; 95% CI: -17.4 to -7.1; p value < .001; dmatched = -0.256) and incongruent reaction times (Mean difference: -20.3 ms; 95% CI: -36.4 to -4.1; p value = .014; dmatched = -0.135), as well as the difference between Stroop congruent reaction time and simple reaction time (Mean difference: -13.8 ms; 95% CI: -20.7 to -7.0; p value < .001; dmatched = -0.216), within the 1-hour post-exercise period compared to the control condition. The simple reaction time (Mean difference: 1.6 ms; 95% CI: -3.5 to 6.7; p value = .539; dmatched = 0.034) and the Stroop effect (Mean difference: -8.0 ms; 95% CI: -21.9 to 5.8; p value = .253; dmatched = -0.062), however, were not statistically significantly influenced by the exercise intervention compared to the control condition.
2. The analyses suggested a linear temporal effect on accuracy-adjusted congruent reaction time: rrm = .114, p = .045, 95% CI: 0.002 to 0.223. This repeated measures correlation coefficient (.114) indicated that the effect of resistance exercise gradually declined between 10-55 minutes post-intervention. However, the repeated measures correlation for incongruent trials, the Stroop effect, the difference between Stroop congruent reaction time and simple reaction time, and simple reaction time were not statistically significant.
3. There were neither linear nor inverted U-shaped relationships found between the changes in plasma epinephrine and any of the cognitive metrics analyzed in this study.
4. The effects of different resistance exercise intensities showed no substantial differences.
Harms
No severe adverse event.
Trial status
Closed.
Conclusions
This study demonstrates the positive impact of a single session of barbell resistance exercise on cognitive tasks that require inhibition. The research observes the temporal aspect of this effect, revealing that the enhancement in cognitive performance may be most pronounced approximately 10 minutes after the exercise session. These findings suggest that training programs focusing on muscular strength improvement through free-weight, multiple-joint, structural exercises may be optimized by scheduling cognitively challenging tasks within 1 to 1.5 hours post-training to maximize both athletic and cognitive benefits. Regarding the association between plasma epinephrine and cognitive performance, the study found no significant relationships between changes in plasma epinephrine levels and cognitive performance following acute resistance exercise.
Trial registration and protocol
The protocol was submitted to ClinicalTrials.gov (NCT05407259) following the acceptance of Stage 1 registered report (Lin, Cheng, et al., 2023). The protocol for the registered report part of this project is also available on the Open Science Framework at https://osf.io/ehvyf.
Funding
This study was supported by the National Taiwan Normal University.
Algom, D., Fitousi, D., & Chajut, E. (2022). Can the Stroop effect serve as the gold standard of conflict monitoring and control? A conceptual critique. Memory & Cognition, 50(5), 883-897. https://doi.org/10.3758/s13421-021-01251-5
Alloway, T. P., Gathercole, S. E., Adams, A. M., Willis, C., Eaglen, R., & Lamont, E. (2005). Working memory and phonological awareness as predictors of progress towards early learning goals at school entry. British Journal of Developmental Psychology, 23(3), 417-426.
Altman, D. G. (1991). Practical statistics for medical research. CRC press.
Alves, C. R. R., Gualano, B., Takao, P. P., Avakian, P., Fernandes, R. M., Morine, D., & Takito, M. Y. (2012). Effects of acute physical exercise on executive functions: A comparison between aerobic and strength exercise [Article]. Journal of Sport and Exercise Psychology, 34(4), 539-549. https://doi.org/10.1123/jsep.34.4.539
American College of Sports Medicine. (2018). ACSM's Guidelines for Exercise Testing and Prescription. Wolters Kluwer.
Anacker, C., & Hen, R. (2017). Adult hippocampal neurogenesis and cognitive flexibility — linking memory and mood. Nature Reviews Neuroscience, 18(6), 335-346. https://doi.org/10.1038/nrn.2017.45
Ando, S., Komiyama, T., Tanoue, Y., Sudo, M., Costello, J. T., Uehara, Y., & Higaki, Y. (2022). Cognitive Improvement After Aerobic and Resistance Exercise Is Not Associated With Peripheral Biomarkers [Brief Research Report]. Frontiers in Behavioral Neuroscience, 16. https://doi.org/10.3389/fnbeh.2022.853150
Aston-Jones, G., & Cohen, J. D. (2005). An integrative theory of locus coeruleus-norepinephrine function: adaptive gain and optimal performance. Annu Rev Neurosci, 28, 403-450. https://doi.org/10.1146/annurev.neuro.28.061604.135709
Baddeley, A. (2012). Working Memory: Theories, Models, and Controversies. Annual Review of Psychology, 63(1), 1-29. https://doi.org/10.1146/annurev-psych-120710-100422
Bakdash, J. Z., & Marusich, L. R. (2017). Repeated Measures Correlation [Methods]. Frontiers in Psychology, 8. https://doi.org/10.3389/fpsyg.2017.00456
Bear, M. F., Connors, B. W., & Paradiso, M. A. (2016). Neuroscience: Exploring the Brain. Wolters Kluwer.
Berk, A., Kaiser, C. A., Lodish, H., Amon, A., Ploegh, H., Bretscher, A., Krieger, M., & Martin, K. C. (2016). Molecular Cell Biology. Macmillan Learning.
Best, J. R., Miller, P. H., & Naglieri, J. A. (2011). Relations between Executive Function and Academic Achievement from Ages 5 to 17 in a Large, Representative National Sample. Learn Individ Differ, 21(4), 327-336. https://doi.org/10.1016/j.lindif.2011.01.007
Binder, D. K., & Scharfman, H. E. (2004). Brain-derived neurotrophic factor. Growth factors (Chur, Switzerland), 22(3), 123-131. https://doi.org/10.1080/08977190410001723308
Bland, J. M., & Altman, D. G. (1995). Statistics notes: Calculating correlation coefficients with repeated observations: Part 1—correlation within subjects. BMJ, 310(6977), 446. https://doi.org/10.1136/bmj.310.6977.446
Brush, C. J., Olson, R. L., Ehmann, P. J., Osovsky, S., & Alderman, B. L. (2016). Dose-Response and Time Course Effects of Acute Resistance Exercise on Executive Function. J Sport Exerc Psychol, 38(4), 396-408. https://doi.org/10.1123/jsep.2016-0027
Bruyer, R., & Brysbaert, M. (2011). Combining speed and accuracy in cognitive psychology: Is the inverse efficiency score (IES) a better dependent variable than the mean reaction time (RT) and the percentage of errors (PE)? Psychologica Belgica, 51, 5-13. https://doi.org/10.5334/pb-51-1-5
Burle, B. s., Vidal, F., Tandonnet, C., & Hasbroucq, T. (2004). Physiological evidence for response inhibition in choice reaction time tasks. Brain and Cognition, 56(2), 153-164. https://doi.org/https://doi.org/10.1016/j.bandc.2004.06.004
Camerer, C. F., Dreber, A., Holzmeister, F., Ho, T.-H., Huber, J., Johannesson, M., Kirchler, M., Nave, G., Nosek, B. A., Pfeiffer, T., Altmejd, A., Buttrick, N., Chan, T., Chen, Y., Forsell, E., Gampa, A., Heikensten, E., Hummer, L., Imai, T., . . . Wu, H. (2018). Evaluating the replicability of social science experiments in Nature and Science between 2010 and 2015. Nature Human Behaviour, 2(9), 637-644. https://doi.org/10.1038/s41562-018-0399-z
Campbell, M. J., Julious, S. A., & Altman, D. G. (1995). Estimating sample sizes for binary, ordered categorical, and continuous outcomes in two group comparisons. BMJ, 311(7013), 1145-1148. https://doi.org/10.1136/bmj.311.7013.1145
Carbonell-Hernandez, L., Ballester-Ferrer, J. A., Sitges-Macia, E., Bonete-Lopez, B., Roldan, A., Cervello, E., & Pastor, D. (2022). Different Exercise Types Produce the Same Acute Inhibitory Control Improvements When the Subjective Intensity Is Equal [Article]. International journal of environmental research and public health, 19(15), Article 9748. https://doi.org/10.3390/ijerph19159748
Chambers, C. D., Dienes, Z., McIntosh, R. D., Rotshtein, P., & Willmes, K. (2015). Registered reports: realigning incentives in scientific publishing. Cortex, 66, A1-2. https://doi.org/10.1016/j.cortex.2015.03.022
Chang, H., Kim, K., Jung, Y. J., & Kato, M. (2017). Effects of acute high-Intensity resistance exercise on cognitive function and oxygenation in prefrontal cortex. J Exerc Nutrition Biochem, 21(2), 1-8. https://doi.org/10.20463/jenb.2017.0012
Chang, Y.-K., & Etnier, J. L. (2009). Effects of an acute bout of localized resistance exercise on cognitive performance in middle-aged adults: A randomized controlled trial study. Psychology of Sport and Exercise, 10(1), 19-24. https://doi.org/https://doi.org/10.1016/j.psychsport.2008.05.004
Chang, Y.-K., Tsai, C.-L., Huang, C.-C., Wang, C.-C., & Chu, I. H. (2014). Effects of acute resistance exercise on cognition in late middle-aged adults: General or specific cognitive improvement? Journal of Science and Medicine in Sport, 17(1), 51-55. https://doi.org/https://doi.org/10.1016/j.jsams.2013.02.007
Chen, Y. C., Li, R. H., Chen, F. T., Wu, C. H., Chen, C. Y., Chang, C. C., & Chang, Y. K. (2023). Acute effect of combined exercise with aerobic and resistance exercises on executive function. PeerJ, 11, e15768. https://doi.org/10.7717/peerj.15768
Chou, C.-C., Hsueh, M.-C., Chiu, Y.-H., Wang, W.-Y., Huang, M.-Y., & Huang, C.-J. (2021). Sustained Effects of Acute Resistance Exercise on Executive Function in Healthy Middle-Aged Adults [Original Research]. Frontiers in Human Neuroscience, 15(451). https://doi.org/10.3389/fnhum.2021.684848
Christensen, L. B., Johnson, B., & Turner, L. A. (2015). Research Methods, Design, and Analysis (12th Global ed.). Pearson Education Limited.
Coelho-Júnior, H. J., Aguiar, S. d. S., Calvani, R., Picca, A., Carvalho, D. d. A., Zwarg-Sá, J. d. C., Audiffren, M., Marzetti, E., & Uchida, M. C. (2021). Acute Effects of Low- and High-Speed Resistance Exercise on Cognitive Function in Frail Older Nursing-Home Residents: A Randomized Crossover Study. Journal of Aging Research, 2021, 9912339. https://doi.org/10.1155/2021/9912339
Cohen, B. H. (2013). Explaining Psychological Statistics. Wiley.
de Almeida, S. S., Teixeira, E. L., Merege-Filho, C. A. A., Dozzi Brucki, S. M., & de Salles Painelli, V. (2021). Acute effects of resistance and functional-task exercises on executive function of obese older adults: Two counterbalanced, crossover, randomized exploratory studies. Sport, Exercise, and Performance Psychology, 10(1), 102-113. https://doi.org/10.1037/spy0000203
de Lacey, G., Record, C., & Wade, J. (1985). How accurate are quotations and references in medical journals? British Medical Journal (Clinical research ed.), 291(6499), 884-886. https://doi.org/10.1136/bmj.291.6499.884
de Souza, D. C., Domingues, W. J. R., Marchini, K. B., Nunhes, P. M., Garcia, A., Hey, L. F., Ardengue, M., Pasinato, I., & Avelar, A. (2020). Acute effect of resistance exercise on cognitive function in people living with HIV. International Journal of STD & AIDS, 32(1), 59-66. https://doi.org/10.1177/0956462420958578
Devilly, G. J., & Borkovec, T. D. (2000). Psychometric properties of the credibility/expectancy questionnaire. Journal of Behavior Therapy and Experimental Psychiatry, 31(2), 73-86. https://doi.org/https://doi.org/10.1016/S0005-7916(00)00012-4
Diamond, A. (2013). Executive Functions. Annual Review of Psychology, 64(1), 135-168. https://doi.org/10.1146/annurev-psych-113011-143750
Diamond, A., & Ling, D. S. (2016). Conclusions about interventions, programs, and approaches for improving executive functions that appear justified and those that, despite much hype, do not. Developmental Cognitive Neuroscience, 18, 34-48. https://doi.org/https://doi.org/10.1016/j.dcn.2015.11.005
Domínguez-Sanchéz, M. A., Bustos-Cruz, R. H., Velasco-Orjuela, G. P., Quintero, A. P., Tordecilla-Sanders, A., Correa-Bautista, J. E., Triana-Reina, H. R., García-Hermoso, A., González-Ruíz, K., Peña-Guzmán, C. A., Hernández, E., Peña-Ibagon, J. C., Téllez-T, L. A., Izquierdo, M., & Ramírez-Vélez, R. (2018). Acute Effects of High Intensity, Resistance, or Combined Protocol on the Increase of Level of Neurotrophic Factors in Physically Inactive Overweight Adults: The BrainFit Study [Original Research]. Frontiers in Physiology, 9. https://doi.org/10.3389/fphys.2018.00741
Dora, K., Suga, T., Tomoo, K., Sugimoto, T., Mok, E., Tsukamoto, H., Takada, S., Hashimoto, T., & Isaka, T. (2021a). Effect of very low-intensity resistance exercise with slow movement and tonic force generation on post-exercise inhibitory control. Heliyon, 7(2), e06261. https://doi.org/https://doi.org/10.1016/j.heliyon.2021.e06261
Dora, K., Suga, T., Tomoo, K., Sugimoto, T., Mok, E., Tsukamoto, H., Takada, S., Hashimoto, T., & Isaka, T. (2021b). Similar improvements in cognitive inhibitory control following low-intensity resistance exercise with slow movement and tonic force generation and high-intensity resistance exercise in healthy young adults: a preliminary study. The Journal of Physiological Sciences, 71(1), 22. https://doi.org/10.1186/s12576-021-00806-0
Dwan, K., Li, T., Altman, D. G., & Elbourne, D. (2019). CONSORT 2010 statement: extension to randomised crossover trials. BMJ, 366, l4378. https://doi.org/10.1136/bmj.l4378
Engeroff, T., Niederer, D., Vogt, L., & Banzer, W. (2019). Intensity and workload related dose-response effects of acute resistance exercise on domain-specific cognitive function and affective response – A four-armed randomized controlled crossover trial. Psychology of Sport and Exercise, 43, 55-63. https://doi.org/https://doi.org/10.1016/j.psychsport.2018.12.009
Falagas, M. E., Pitsouni, E. I., Malietzis, G. A., & Pappas, G. (2008). Comparison of PubMed, Scopus, Web of Science, and Google Scholar: strengths and weaknesses. The FASEB Journal, 22(2), 338-342. https://doi.org/https://doi.org/10.1096/fj.07-9492LSF
Fiedler, K., & Schwarz, N. (2016). Questionable Research Practices Revisited. Social Psychological and Personality Science, 7(1), 45-52. https://doi.org/10.1177/1948550615612150
Fisher, R. A. (1963). Statistical methods for research workers (13th revised ed.).
Foster, C., Florhaug, J. A., Franklin, J., Gottschall, L., Hrovatin, L. A., Parker, S., Doleshal, P., & Dodge, C. (2001). A new approach to monitoring exercise training. J Strength Cond Res, 15(1), 109-115.
Friedman, N. P., & Miyake, A. (2004). The relations among inhibition and interference control functions: a latent-variable analysis. J Exp Psychol Gen, 133(1), 101-135. https://doi.org/10.1037/0096-3445.133.1.101
Haff, G. G., & Haff, E. E. (2011). Resistance Training
Program Design. In J. W. Coburn & M. H. Malek (Eds.), NSCA's Essentials of Personal Training. Human Kinetics.
Haff, G. G., & Triplett, N. T. (2015). Essentials of strength training and conditioning 4th edition. Human kinetics.
Harveson, A. T., Hannon, J. C., Brusseau, T. A., Podlog, L., Papadopoulos, C., Durrant, L. H., Hall, M. S., & Kang, K. D. (2016). Acute Effects of 30 Minutes Resistance and Aerobic Exercise on Cognition in a High School Sample [Article]. Research Quarterly for Exercise and Sport, 87(2), 214-220. https://doi.org/10.1080/02701367.2016.1146943
Harveson, A. T., Hannon, J. C., Brusseau, T. A., Podlog, L., Papadopoulos, C., Hall, M. S., & Celeste, E. (2019). Acute Exercise and Academic Achievement in Middle School Students. International journal of environmental research and public health, 16(19), 3527. https://doi.org/10.3390/ijerph16193527
Higgins, J., Eldridge, S., & Li, T. (2019). Including variants on randomized trials. In J. Higgins, J. Thomas, J. Chandler, M. Cumpston, T. Li, M. Page, & V. Welch (Eds.), Cochrane Handbook for systematic reviews of interventions version 6.0 (updated July 2019). Cochrane. www.training.cochrane.org/handbook
Holcombe, A. O., & Hagger, M. S. (2014, November 21, 2021). RRR- Ego Depletion (Sripada et al.). osf.io/jymhe
Ioannidis, J. P. A. (2005). Why Most Published Research Findings Are False. PLoS medicine, 2(8), e124. https://doi.org/10.1371/journal.pmed.0020124
Janz, N., & Freese, J. (2021). Replicate Others as You Would Like to Be Replicated Yourself. PS: Political Science & Politics, 54(2), 305-308. https://doi.org/10.1017/S1049096520000943
Jergas, H., & Baethge, C. (2015). Quotation accuracy in medical journal articles-a systematic review and meta-analysis. PeerJ, 3, e1364. https://doi.org/10.7717/peerj.1364
Johnson, L., Addamo, P. K., Selva Raj, I., Borkoles, E., Wyckelsma, V., Cyarto, E., & Polman, R. C. (2016). An Acute Bout of Exercise Improves the Cognitive Performance of Older Adults. J Aging Phys Act, 24(4), 591-598. https://doi.org/10.1123/japa.2015-0097
Julious, S., Campbell, M., & Altman, D. (1999). Estimating sample sizes for continuous, binary, and ordinal outcomes in paired comparisons: practical hints. Journal of biopharmaceutical statistics, 9(2), 241-251.
Julious, S. A., Campbell, M. J., & Altman, D. G. (1999). Estimating sample sizes for continuous, binary, and ordinal outcomes in paired comparisons: practical hints. J Biopharm Stat, 9(2), 241-251. https://doi.org/10.1081/bip-100101174
Lasserson, T., Thomas, J., & Higgins, J. (2019). Starting a review. In J. Higgins, J. Thomas, J. Chandler, M. Cumpston, T. Li, M. Page, & V. Welch (Eds.), Cochrane Handbook for systematic reviews of interventions version 6.0 (updated July 2019). Cochrane. www.training.cochrane.org/handbook
LeSuer, D. A., McCormick, J. H., Mayhew, J. L., Wasserstein, R. L., & Arnold, M. D. (1997). The Accuracy of Prediction Equations for Estimating 1-RM Performance in the Bench Press, Squat, and Deadlift. The Journal of Strength & Conditioning Research, 11(4).
Lewin, G. R., & Carter, B. D. (2014). Neurotrophic Factors. Springer Berlin Heidelberg.
Liapakis, G., Chan, W. C., Papadokostaki, M., & Javitch, J. A. (2004). Synergistic Contributions of the Functional Groups of Epinephrine to Its Affinity and Efficacy at the β<sub>2</sub> Adrenergic Receptor. Molecular Pharmacology, 65(5), 1181-1190. https://doi.org/10.1124/mol.65.5.1181
Lin, T. Y., Cheng, H. C., Tsai, Y. L., Liu, H. W., & Hung, T. M. (2023). Effects of resistance exercises on inhibitory control and plasma epinephrine levels: A registered report of a crossover randomized controlled trial. Psychophysiology, n/a(n/a), e14489. https://doi.org/https://doi.org/10.1111/psyp.14489
Lin, T. Y., Cheng, H. C., Tsai, Y. L., Liu, H. W., & Hung, T. M. (in press). Effects of Resistance Exercises on Inhibitory Control and Plasma Epinephrine Levels: A Registered Report of a Crossover Randomized Controlled Trial. Psychophysiology, n/a(n/a).
Lin, T. Y., Chueh, T. Y., & Hung, T. M. (2023). Preferred Reporting Items for Resistance Exercise Studies (PRIRES): A Checklist Developed Using an Umbrella Review of Systematic Reviews. Sports Medicine - Open, 9(1), 114. https://doi.org/10.1186/s40798-023-00640-1
Lin, T. Y., Hsieh, S. S., Chueh, T. Y., Huang, C. J., & Hung, T. M. (2021). The effects of barbell resistance exercise on information processing speed and conflict-related ERP in older adults: a crossover randomized controlled trial. Scientific Reports, 11(1), 9137. https://doi.org/10.1038/s41598-021-88634-5
Lin, T. Y., & Hung, T. M. (2022). How to Reduce Errors and Improve Transparency by Using More Precise Citations. Frontiers in Cardiovascular Medicine. https://doi.org/10.3389/fcvm.2022.866279
Liu, S., Yu, Q., Li, Z., Cunha, P. M., Zhang, Y., Kong, Z., Lin, W., Chen, S., & Cai, Y. (2020). Effects of Acute and Chronic Exercises on Executive Function in Children and Adolescents: A Systemic Review and Meta-Analysis. Front Psychol, 11, 554915. https://doi.org/10.3389/fpsyg.2020.554915
Luck, S. J., & Gaspelin, N. (2017). How to get statistically significant effects in any ERP experiment (and why you shouldn't). Psychophysiology, 54(1), 146-157. https://doi.org/https://doi.org/10.1111/psyp.12639
Mahoney, M. J. (1977). Publication prejudices: An experimental study of confirmatory bias in the peer review system. Cognitive Therapy and Research, 1(2), 161-175. https://doi.org/10.1007/BF01173636
Marusich, L., & Bakdash, J. (2021). rmcorrShiny: A web and standalone application for repeated measures correlation [version 2; peer review: 2 approved]. F1000Research, 10(697). https://doi.org/10.12688/f1000research.55027.2
McGuire, L. C., Ford, E. S., & Ajani, U. A. (2006). Cognitive Functioning as a Predictor of Functional Disability in Later Life. The American Journal of Geriatric Psychiatry, 14(1), 36-42. https://doi.org/https://doi.org/10.1097/01.JGP.0000192502.10692.d6
McMorris, T. (2016). Reappraisal of the acute, moderate intensity exercise-catecholamines interaction effect on speed of cognition: role of the vagal/NTS afferent pathway. J Appl Physiol (1985), 120(6), 657-658. https://doi.org/10.1152/japplphysiol.00749.2015
McMorris, T., Davranche, K., Jones, G., Hall, B., Corbett, J., & Minter, C. (2009). Acute incremental exercise, performance of a central executive task, and sympathoadrenal system and hypothalamic-pituitary-adrenal axis activity. Int J Psychophysiol, 73(3), 334-340. https://doi.org/10.1016/j.ijpsycho.2009.05.004
McMorris, T., Turner, A., Hale, B. J., & Sproule, J. (2016). Beyond the catecholamines hypothesis for an acute exercise–cognition interaction: A neurochemical perspective. In Exercise-cognition interaction: Neuroscience perspectives. (pp. 65-103). Elsevier Academic Press. https://doi.org/10.1016/B978-0-12-800778-5.00004-9
Miller, H. V., Barnes, J. C., & Beaver, K. M. (2011). Self-control and health outcomes in a nationally representative sample. Am J Health Behav, 35(1), 15-27. https://doi.org/10.5993/ajhb.35.1.2
Miyake, A., Friedman, N. P., Emerson, M. J., Witzki, A. H., Howerter, A., & Wager, T. D. (2000). The unity and diversity of executive functions and their contributions to complex "Frontal Lobe" tasks: a latent variable analysis. Cogn Psychol, 41(1), 49-100. https://doi.org/10.1006/cogp.1999.0734
Moffitt, T. E., Arseneault, L., Belsky, D., Dickson, N., Hancox, R. J., Harrington, H., Houts, R., Poulton, R., Roberts, B. W., Ross, S., Sears, M. R., Thomson, W. M., & Caspi, A. (2011). A gradient of childhood self-control predicts health, wealth, and public safety. Proceedings of the National Academy of Sciences, 108(7), 2693-2698. https://doi.org/10.1073/pnas.1010076108
Mogull, S. A. (2017). Accuracy of cited “facts” in medical research articles: A review of study methodology and recalculation of quotation error rate. PLOS ONE, 12(9), e0184727. https://doi.org/10.1371/journal.pone.0184727
Moher, D., Hopewell, S., Schulz, K. F., Montori, V., Gøtzsche, P. C., Devereaux, P. J., Elbourne, D., Egger, M., & Altman, D. G. (2010). CONSORT 2010 Explanation and Elaboration: updated guidelines for reporting parallel group randomised trials. BMJ, 340, c869. https://doi.org/10.1136/bmj.c869
Mongeon, P., & Paul-Hus, A. (2016). The journal coverage of Web of Science and Scopus: a comparative analysis. Scientometrics, 106(1), 213-228. https://doi.org/10.1007/s11192-015-1765-5
Murphy, P. R., Robertson, I. H., Balsters, J. H., & O'connell, R. G. (2011). Pupillometry and P3 index the locus coeruleus–noradrenergic arousal function in humans. Psychophysiology, 48(11), 1532-1543. https://doi.org/https://doi.org/10.1111/j.1469-8986.2011.01226.x
Nieuwenhuis, S., Aston-Jones, G., & Cohen, J. D. (2005). Decision making, the P3, and the locus coeruleus-norepinephrine system. Psychol Bull, 131(4), 510-532. https://doi.org/10.1037/0033-2909.131.4.510
Nutt, F., Hills, S. P., Russell, M., Waldron, M., Scott, P., Norris, J., Cook, C. J., Mason, B., Ball, N., & Kilduff, L. P. (2021). Morning resistance exercise and cricket-specific repeated sprinting each improve indices of afternoon physical and cognitive performance in professional male cricketers. Journal of Science and Medicine in Sport. https://doi.org/https://doi.org/10.1016/j.jsams.2021.08.017
Oberste, M., Javelle, F., Sharma, S., Joisten, N., Walzik, D., Bloch, W., & Zimmer, P. (2019). Effects and Moderators of Acute Aerobic Exercise on Subsequent Interference Control: A Systematic Review and Meta-Analysis [Systematic Review]. Frontiers in Psychology, 10(2616). https://doi.org/10.3389/fpsyg.2019.02616
Open Science Collaboration. (2015). PSYCHOLOGY. Estimating the reproducibility of psychological science. Science, 349(6251), aac4716. https://doi.org/10.1126/science.aac4716
Piepmeier, A. T., & Etnier, J. L. (2015). Brain-derived neurotrophic factor (BDNF) as a potential mechanism of the effects of acute exercise on cognitive performance. Journal of Sport and Health Science, 4(1), 14-23. https://doi.org/https://doi.org/10.1016/j.jshs.2014.11.001
Poe, G. R., Foote, S., Eschenko, O., Johansen, J. P., Bouret, S., Aston-Jones, G., Harley, C. W., Manahan-Vaughan, D., Weinshenker, D., Valentino, R., Berridge, C., Chandler, D. J., Waterhouse, B., & Sara, S. J. (2020). Locus coeruleus: a new look at the blue spot. Nat Rev Neurosci, 21(11), 644-659. https://doi.org/10.1038/s41583-020-0360-9
Quintero, A. P., Bonilla-Vargas, K. J., Correa-Bautista, J. E., Domínguez-Sanchéz, M. A., Triana-Reina, H. R., Velasco-Orjuela, G. P., García-Hermoso, A., Villa-González, E., Esteban-Cornejo, I., Correa-Rodríguez, M., & Ramírez-Vélez, R. (2018). Acute effect of three different exercise training modalities on executive function in overweight inactive men: A secondary analysis of the BrainFit study [Article]. Physiology and Behavior, 197, 22-28. https://doi.org/10.1016/j.physbeh.2018.09.010
Refalo, M. C., Hamilton, D. L., Paval, D. R., Gallagher, I. J., Feros, S. A., & Fyfe, J. J. (2021). Influence of resistance training load on measures of skeletal muscle hypertrophy and improvements in maximal strength and neuromuscular task performance: A systematic review and meta-analysis [Review]. Journal of Sports Sciences, 39(15), 1723-1745. https://doi.org/10.1080/02640414.2021.1898094
Ruffoli, R., Giorgi, F. S., Pizzanelli, C., Murri, L., Paparelli, A., & Fornai, F. (2011). The chemical neuroanatomy of vagus nerve stimulation. J Chem Neuroanat, 42(4), 288-296. https://doi.org/10.1016/j.jchemneu.2010.12.002
Sardeli, A. V., Ferreira, M. L. V., Santos, L. d. C., Rodrigues, M. d. S., Damasceno, A., Cavaglieri, C. R., & Chacon-Mikahil, M. P. T. (2018). Low-load resistance exercise improves cognitive function in older adults. Revista Brasileira de Medicina do Esporte, 24(2), 125-129. https://doi.org/http://doi.org/10.1590/1517-869220182402179200
Savage, R., Cornish, K., Manly, T., & Hollis, C. (2006). Cognitive processes in children's reading and attention: the role of working memory, divided attention, and response inhibition. Br J Psychol, 97(Pt 3), 365-385. https://doi.org/10.1348/000712605x81370
Scheel, A. M., Schijen, M. R. M. J., & Lakens, D. (2021). An Excess of Positive Results: Comparing the Standard Psychology Literature With Registered Reports. Advances in Methods and Practices in Psychological Science, 4(2), 25152459211007467. https://doi.org/10.1177/25152459211007467
Schmidt, F. L., & Hunter, J. (2004). General Mental Ability in the World of Work: Occupational Attainment and Job Performance. Journal of personality and social psychology, 86(1), 162-173. https://doi.org/10.1037/0022-3514.86.1.162
Schreurs, J., Seelig, T., & Schulman, H. (1986). β2-Adrenergic Receptors on Peripheral Nerves. Journal of Neurochemistry, 46(1), 294-296. https://doi.org/https://doi.org/10.1111/j.1471-4159.1986.tb12961.x
Schwanbeck, S., Chilibeck, P. D., & Binsted, G. (2009). A Comparison of Free Weight Squat to Smith Machine Squat Using Electromyography. The Journal of Strength & Conditioning Research, 23(9), 2588-2591. https://doi.org/10.1519/JSC.0b013e3181b1b181
Sheppard, J. M., & Triplett, N. T. (2015). Program Design
for Resistance Training. In G. G. Haff & N. T. Triplett (Eds.), Essentials of strength training and conditioning 4th edition. Human kinetics.
Silveira-Rodrigues, J. G., Campos, B. T., de Lima, A. T., Ogando, P. H. M., Gomes, C. B., Gomes, P. F., Aleixo, I. M. S., & Soares, D. D. (2023). Acute bouts of aerobic and resistance exercise similarly alter inhibitory control and response time while inversely modifying plasma BDNF concentrations in middle-aged and older adults with type 2 diabetes [Article]. Experimental Brain Research, 241(4), 1173-1183. https://doi.org/10.1007/s00221-023-06588-8
Simonsohn, U. (2018). Two lines: A valid alternative to the invalid testing of u-shaped relationships with quadratic regressions. Advances in Methods and Practices in Psychological Science, 1(4), 538-555. https://doi.org/10.1177/2515245918805755
Soderberg, C. K., Errington, T. M., Schiavone, S. R., Bottesini, J., Thorn, F. S., Vazire, S., Esterling, K. M., & Nosek, B. A. (2021). Initial evidence of research quality of registered reports compared with the standard publishing model. Nature Human Behaviour, 5(8), 990-997. https://doi.org/10.1038/s41562-021-01142-4
Steele, J., Fisher, J., Giessing, J., & Gentil, P. (2017). Clarity in reporting terminology and definitions of set endpoints in resistance training. Muscle & Nerve, 56(3), 368-374. https://doi.org/https://doi.org/10.1002/mus.25557
Szuhany, K. L., Bugatti, M., & Otto, M. W. (2015). A meta-analytic review of the effects of exercise on brain-derived neurotrophic factor. Journal of Psychiatric Research, 60, 56-64. https://doi.org/https://doi.org/10.1016/j.jpsychires.2014.10.003
Tomoo, K., Suga, T., Dora, K., Sugimoto, T., Mok, E., Tsukamoto, H., Takada, S., Hashimoto, T., & Isaka, T. (2021). Impact of Inter-Set Short Rest Interval Length on Inhibitory Control Improvements Following Low-Intensity Resistance Exercise in Healthy Young Males [Article]. Frontiers in Physiology, 12, Article 741966. https://doi.org/10.3389/fphys.2021.741966
Tomoo, K., Suga, T., Sugimoto, T., Tanaka, D., Shimoho, K., Dora, K., Mok, E., Matsumoto, S., Tsukamoto, H., Takada, S., Hashimoto, T., & Isaka, T. (2020). Work volume is an important variable in determining the degree of inhibitory control improvements following resistance exercise. Physiological Reports, 8(15), e14527. https://doi.org/https://doi.org/10.14814/phy2.14527
Totah, N. K. B., Logothetis, N. K., & Eschenko, O. (2019). Noradrenergic ensemble-based modulation of cognition over multiple timescales. Brain Research, 1709, 50-66. https://doi.org/https://doi.org/10.1016/j.brainres.2018.12.031
Tsuk, S., Netz, Y., Dunsky, A., Zeev, A., Carasso, R., Dwolatzky, T., Salem, R., Behar, S., & Rotstein, A. (2019). The Acute Effect of Exercise on Executive Function and Attention: Resistance Versus Aerobic Exercise. Advances in cognitive psychology, 15(3), 208-215. https://doi.org/10.5709/acp-0269-7
Tsukamoto, H., Suga, T., Takenaka, S., Takeuchi, T., Tanaka, D., Hamaoka, T., Hashimoto, T., & Isaka, T. (2017). An acute bout of localized resistance exercise can rapidly improve inhibitory control. PLoS One, 12(9), e0184075. https://doi.org/10.1371/journal.pone.0184075
Velasco-Orjuela, G. P., Domínguez-Sanchéz, M. A., Hernández, E., Correa-Bautista, J. E., Triana-Reina, H. R., García-Hermoso, A., Peña-Ibagon, J. C., Izquierdo, M., Cadore, E. L., Hackney, A. C., & Ramírez-Vélez, R. (2018). Acute effects of high-intensity interval, resistance or combined exercise protocols on testosterone – cortisol responses in inactive overweight individuals. Physiology & Behavior, 194, 401-409. https://doi.org/https://doi.org/10.1016/j.physbeh.2018.06.034
Vohs, K. D., Schmeichel, B. J., Lohmann, S., Gronau, Q. F., Finley, A. J., Ainsworth, S. E., Alquist, J. L., Baker, M. D., Brizi, A., Bunyi, A., Butschek, G. J., Campbell, C., Capaldi, J., Cau, C., Chambers, H., Chatzisarantis, N. L. D., Christensen, W. J., Clay, S. L., Curtis, J., . . . Albarracín, D. (2021). A Multisite Preregistered Paradigmatic Test of the Ego-Depletion Effect. Psychological Science, 32(10), 1566-1581. https://doi.org/10.1177/0956797621989733
Vonk, M., Wikkerink, S., Regan, K., & Middleton, L. E. (2019). Similar changes in executive function after moderate resistance training and loadless movement. PLoS One, 14(2), e0212122. https://doi.org/10.1371/journal.pone.0212122
Wang, C. C., Alderman, B., Wu, C. H., Chi, L., Chen, S. R., Chu, I. H., & Chang, Y. K. (2019). Effects of Acute Aerobic and Resistance Exercise on Cognitive Function and Salivary Cortisol Responses. J Sport Exerc Psychol, 41(2), 73-81. https://doi.org/10.1123/jsep.2018-0244
Wang, H., Tang, W., & Zhao, Y. (2023). Acute effects of different exercise forms on executive function and the mechanism of cerebral hemodynamics in hospitalized T2DM patients: a within-subject study [Article]. Frontiers in Public Health, 11, Article 1165892. https://doi.org/10.3389/fpubh.2023.1165892
Waterhouse, B. D., & Navarra, R. L. (2019). The locus coeruleus-norepinephrine system and sensory signal processing: A historical review and current perspectives. Brain Res, 1709, 1-15. https://doi.org/10.1016/j.brainres.2018.08.032
Wilke, J., Giesche, F., Klier, K., Vogt, L., Herrmann, E., & Banzer, W. (2019). Acute Effects of Resistance Exercise on Cognitive Function in Healthy Adults: A Systematic Review with Multilevel Meta-Analysis. Sports Med, 49(6), 905-916. https://doi.org/10.1007/s40279-019-01085-x
Wilke, J., Stricker, V., & Usedly, S. (2020). Free-Weight Resistance Exercise Is More Effective in Enhancing Inhibitory Control than Machine-Based Training: A Randomized, Controlled Trial. Brain Sciences, 10(10), 702. https://www.mdpi.com/2076-3425/10/10/702
Wirth, K., Keiner, M., Hartmann, H., Sander, A., & Mickel, C. (2016). Effect of 8 weeks of free-weight and machine-based strength training on strength and power performance. Journal of human kinetics, 53, 201-210. https://doi.org/10.1515/hukin-2016-0023
Yamada, Y., Song, J. S., Bell, Z. W., Wong, V., Spitz, R. W., Abe, T., & Loenneke, J. P. (2021). Effects of isometric handgrip exercise with or without blood flow restriction on interference control and feelings. Clinical Physiology and Functional Imaging, 41(6), 480-487. https://doi.org/https://doi.org/10.1111/cpf.12723
Zatsiorsky, V. M., Kraemer, W. J., & Fry, A. C. (2020). Science and Practice of Strength Training. Human Kinetics.
Zourdos, M. C., Klemp, A., Dolan, C., Quiles, J. M., Schau, K. A., Jo, E., Helms, E., Esgro, B., Duncan, S., Garcia Merino, S., & Blanco, R. (2016). Novel Resistance Training-Specific Rating of Perceived Exertion Scale Measuring Repetitions in Reserve. J Strength Cond Res, 30(1), 267-275. https://doi.org/10.1519/jsc.0000000000001049