研究生: |
范仕遠 Fan, Shi-Yuan |
---|---|
論文名稱: |
超高靈敏度的羧基改性氧化石墨烯之生醫感測於表面電漿子共振晶片之研發 Ultra Sensitivity of Carboxylated Graphene Oxide for Surface Plasmon Resonance Biosensors |
指導教授: |
邱南福
Chiu, Nan-Fu |
學位類別: |
碩士 Master |
系所名稱: |
光電工程研究所 Graduate Institute of Electro-Optical Engineering |
論文出版年: | 2017 |
畢業學年度: | 105 |
語文別: | 中文 |
論文頁數: | 86 |
中文關鍵詞: | 羧化氧化石墨烯 、羧基改性氧化石墨烯 、氧化石墨烯 、表面電漿子共振 、生物晶片 、生物感測 、分子動力學分析 、糖類抗原19-9 |
英文關鍵詞: | Carboxylated graphite oxide, Biochip, Carbohydrate Antigen 19-9 |
DOI URL: | https://doi.org/10.6345/NTNU202202070 |
論文種類: | 學術論文 |
相關次數: | 點閱:280 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文使用以羧基改性氧化石墨烯為基材的表面電漿子共振感測晶片檢測牛血清蛋白以及糖類抗原19-9。首先使用牛血清蛋白比較羧基改性氧化石墨烯生醫晶片、氧化石墨烯生醫晶片、傳統生醫晶片的靈敏度。再由靈敏度最高的羧基改性氧化石墨烯生醫晶片檢測糖類抗原19-9。
本論文也探討羧基改性氧化石墨烯、氧化石墨烯、石墨烯三種材料的導電性和單位折射率角位移靈敏度(S_RI)以及生物分子的吸附效率(E)比較。羧基改性氧化石墨烯擁有比氧化石墨烯更高的導電性,因為羧基能增加碳鏈的可饒性,且讓電荷載體更容易地沿著碳鏈移動。而導電性的提昇能增加表面電漿子極化的傳播常數,其與S_RI是正比的關係。表面電漿子共振系統被用來驗證羧基改性氧化石墨烯的S_RI度比氧化石墨烯更高。多功能電漿量測系統用來觀察羧基改性氧化石墨烯在640 mn-700 nm波長內表面電漿子共振角的特性。而穿透光譜系統以及掃描式電子顯微鏡則是被用來觀察羧基改性氧化石墨烯鍵結在晶片的特性。
在實驗中證明了以羧基改性氧化石墨烯為基材的表面電漿子共振生物晶片於檢測牛血清蛋白時擁有超高的靈敏度和超低的檢測極限。0.275 mg/ml的羧基改性氧化石墨烯生醫晶片靈敏度比2 mg/ml的氧化石墨烯生醫晶片提升了2.1倍。除此之外,羧基改性氧化石墨烯生醫晶片在檢測牛血清蛋白抗體時最低檢測極可達10 fg/ml,明顯優於傳統生醫晶片。最後使用羧基改性氧化石墨烯進行糖類抗原19-9免疫反應的檢測。文獻指出有79%的胰腺癌病患體內糖類抗原19-9的含量在37 unit/ml以上。實驗結果發現以羧基改性氧化石墨烯為基材的表面電漿子共振生物晶片最低的抗原檢測極限可達10 unit/ml。
基於本論文的實驗結果,以羧基改性氧化石墨烯為基材的表面電漿子共振生物晶片未來可以被使用在臨床診斷,廣泛應用於製藥行業、農業與環境檢測,大幅改善國人的健康品質。
In this paper we proved that carboxyl-functionalized graphene oxide (GO-COOH) was used to detect pancreatic cancer indicator protein 19-9 with surface plasmon resonance (SPR) (Carbohydrate Antigen, CA19-9). We compare the sensitivity of GO-COOH biosensor、GO biosensor and traditional biosensor with bovine serum albumin. Next to detected CA19-9 by the highest sensitivity of GO-COOH biosensor.
GO-COOH, graphene oxide (GO) and graphene were discussed with conductivity、SPR angular displacement sensitivity (S_RI) and adsorption efficiency of biomolecules. GO-COOH has better conductivity than GO because the carboxyl group is more flexible with carbon chain than other oxygen-containing functional groups and allows the charge carrier to move more easily along the carbon chain. The enhancement of conductivity increases the propagation constant of the surface plasma polarization, which is proportional to S_RI, and uses the SPR system to verify that GO-COOH is better than GO. Multifunctional plasmonic system (MPS) was been used to observe the characteristics of GO-COOH at the SPR angle of 640 mn-700 nm. The penetrating spectroscopy system and the Scanning electron microscope (SEM) were used to observe the properties of the GO-COOH bond on the chip.
Experiment of SPR system is proved that GO-COOH-based surface plasmon resonance biochip has high sensitivity and low detection limit when detecting Anti-Bovine Albumin antibody (anti-BSA). 0.275 mg/ml GO-COOH biochip was 2.1 times better than the 2 mg/ml GO chip. In addition, the limit of detection of GO-COOH biochip low to 10 fg/ml in the detection of anti-BSA, significantly better than traditional biochip. Finally, the SPR system was used to detect the CA19-9 immune response. Previous literature indicates that 79% of patients with pancreatic cancer contains CA19-9 above 37 units/ml. The results show that the lowest antigen detection limit of GO-COOH as the biomaterial is 10 unit/ml.
Based on the experimental results of this paper, the surface plasmon resonance biochip with GO-COOH as the biomaterial can be used in clinical diagnosis and widely used in the pharmaceutical industry, agriculture and environmental testing, and greatly improve the health quality of people.
[1] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, et al. “Electric field effect in atomically thin carbon films,” science., 2004, 306, 666.
[2] H. Chen, M. B. Muller, K. J. Gilmore, G. G. Wallace and D. Li, “Mechanically strong, electrically conductive, and biocompatible graphene paper,” Adv. Mater., 2008, 20, 3557.
[3] D. R. Dreyer, S. J. Park, C. W. Bielawski and R. S. Ruoff, “The chemistry of graphene oxide,” Chem. Soc. Rev., 2010, 39, 228.
[4] Q. Tu, L. Pang, Y. Chen, Y. Zhang, R. Zhang, B. Lu and J. Wang, “Effects of surface charges of graphene oxide on neuronal outgrowth and branching,” ANALYST., 2014, 139, 105.
[5] Z. Liu, J. T. Robinson, X. Sun, and H. Dai, “PEGylated nano-graphene oxide for delivery of water insoluble cancer drugs,” J. Am. Chem. Soc., 2008 ,130, 10876.
[6] X. Sun, Z. Liu, K. Welsher, J. T. Robinson, A. Goodwin, S. Zaric, and H. Dai, “Nano-graphene oxide for cellular imaging and drug delivery,” Nano Res., 2008, 1, 203.
[7] J. Homola, S. S. Yeea and G. Gauglitz, “Surface plasmon resonance sensor: review,” Sens. Actuators, B Chem., 1999, 54, 3.
[8] K. Chung, A. Rani, J. E. Lee, J. E. Kim, Y. Kim, H. Yang, S. O. Kim, D. Kim and D. H. Kim, “Systematic study on the sensitivity enhancement in graphene plasmonic sensors based on layer-by-layer self-assembled graphene oxide multilayers and their reduced analogues,” Appl. Mater. Interfaces., 2015, 7, 144.
[9] N. F. Chiu, T. Y. Huang, “Sensitivity and kinetic analysis of graphene oxide-based surface plasmon resonance biosensors,” Sens. actuators. B Chem., 2014, 197, 35.
[10] M. Singh, M. Holzinger, M. Holzinger, M. Tabrizian, S. Winters, N. C. Berner, S. Cosnier and G. S. Duesberg, “Noncovalently functionalized monolayer graphene for sensitivity enhancement of surface plasmon resonance immunosensors,” J. Am. Chem. Soc., 2015, 137, 2800.
[11] Y. V. Stebunov, O. A. Aftenieva, A. V. Arsenin and V. S. Volkov, “Highly sensitive and selective sensor chips with graphene-oxide linking layer,” Appl. Mater. Interfaces., 2015, 7, 39, 21727.
[12] C. Karuppiah, S. Cheemalapati, S. M. Chen and S. Palanisamy, “Carboxyl-functionalized graphene oxide modified electrode,” Ionics., 2015 ,231.
[13] L. Wu, H. S. Chu, W. S. Koh, and E. P. Li, “Highly sensitive graphene biosensors based on surface plasmon resonance,” OPT. EXPRESS., 2010 18, 14, 14396.
[14] J. Clerk Maxwell, A Treatise on Electricity and Magnetism, 3rd ed., vol. 2. Oxford: Clarendon, 1892, 68.
[15] R. W. Wood, “On a remarkable case of uneven distribution of light in a diffraction grating spectrum,” Proc. Phys. Soc. London., 1902, 18, 269.
[16] L. Rayleigh, “On the dynamical theory of gratings,” Proc. R. Soc. London. Ser. A., 1907, 79, 399.
[17] E. A. Stern and R. A. Ferrell, “Surface plasma oscillations of a degenerate electron gas,” Phys. Rev., 1960, 120, 130.
[18] A. Otto, “Excitation of nonradiative surface plasma waves in silver by the method of frustrated reflection,” Z. Phys., 1968, 216, 398.
[19] E. Kreschmann, “Die bestimmung optischer konstanten von metallen durch anregung von oberflachenplasmaschwingungen,” Z. Phys., 1971, 241, 313.
[20] B. Liedberg, C. Nylander and I. Lundstrom, “Suface plasmons resonance for gas detection and biosensing,” Sens. Actuators., 1983, 4, 299.
[21] S. Y. Nien, N. F. Chiu, Y. H. Ho, J. H. Lee, C. W. Lin, K. C. Wu, et al. “Directional photoluminescence enhancement of organic emitters via surface plasmon coupling,” Appl. Phys. Lett., 2009, 94, 103304.
[22] N. F. Chiu, T. Y. Huang, H.-C. Lai, K.-C. Liu, “Graphene oxide-based SPR biosensor chip for immunoassay applications,” Nanoscale Res. Lett., 2014, 9, 445.
[23] W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature, 2003, 424, 824.
[24] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, et al. “Two-dimensional gas of massless Dirac fermions in graphene,” Nature., 2005, 438, 197.
[25] Y. Zhu, S. Murali, W. Cai, X. Li, J. W. Suk, J. R. Potts, et al. “graphene and graphene oxide: synthesis, properties, and application,” Adv. Mater., 2010, 22, 3906.
[26] H. Raether, “Surface plasmons on smooth and rough surfaces and on gratings,” Springer Tracts in Modern Physics., 1988, 111, ISBN: 978-3-540-17363-2.
[27] R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science., 2008, 320, 1308.
[28] J.J. Yoo, K. Balakrishnan, J. Huang, V. Meunier, B. G. Sumpter, A. Srivastava, et al. “Ultrathin planar graphene supercapacitors,” Nano Lett., 2011, 11, 1423.
[29] O. Salihoglu, S. Balci, and C. Kocabas, “Plasmon-polaritons on graphene-metal surface and their use in biosensors,” Appl. Phys. Lett., 2012, 100, 213110.
[30] X. S. Li, W. W. Cai, J. H. An, S. Y. Kim, J. H. Nah, D. X. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, “Large-area synthesis of high-quality and uniform graphene films on copper foils,” Science, 2009, 324, 1312.
[31] D. R. Dreyer, S. J. Park, C. W. Bielawski and R. S. Ruoff, “The chemistry of graphene oxide,” Chem. Soc. Rev., 2010, 39, 228.
[32] B. C. Brodie, “On the atomic weigh of graphite,” Phil. Trans. R. Soc. Lond., 1859, 149, 249.
[33] W.S. Hummers and R.E. Offeman, “Preparation of graphitic oxide,” J. Am. Chem. Soc., 1958, 80, 1339.
[34] A. Bagri, C. Mattevi, M. Acik, Y. J. Chabal, M. Chhowalla and V. B. Shenoy, “Structural evolution during the reduction of chemically derived graphene oxide,” Nat. Chem., 2010, 2, 581.
[35] P. Johari and V. B. Shenoy, “Modulating optical properties of graphene oxide: role of prominent functional groups,” ACS Nano., 2011, 5, 9, 7640.
[36] K. A. Mkhoyan, A. W. Contryman, J. Silcox, D. A. Stewart, G. Eda, C. Mattevi, S. Miller and M. Chhowalla, “Atomic and electronic structure of graphene-oxide,” Nano Lett., 2009, 9, 3, 1058.
[37] Z. Liu, Z. Guo, H. Zhong, X. Qin, M. Wan and B. Yang, “Graphene oxide based surface-enhanced Raman scattering probes for cancer cell imaging,” Phys. Chem. Chem. Phys., 2013, 15, 2961.
[38] I. Jung, M. Vaupel, M. Pelton, R. Piner, D. A. Dikin, S. Stankovich, J. An and R. S. Ruoff, “Characterization of thermally reduced graphene oxide by imaging ellipsometry,” J. Phys. Chem. C., 2008, 112, 23, 8499.
[39] N. F. Chiu, S. Y. Fan, C. D. Yang and T. Y. Huang, “Carboxyl-functionalized graphene oxide composites as SPR biosensors with enhanced sensitivity for immunoaffinity detection,” Biosens Bioelectron., 2017, 25, 73.
[40] J. Li, D. Liu, B. Li, J. Wang, S. Han, L. Liu and H. Wei, “A bio-inspired nacre-like layered hybrid structure of calcium carbonate under the control of carboxyl graphene,” CrystEngComm., 2015, 17, 520.
[41] E. Song, D. Cheng, Y. Song, M. Jiang and J. Yu, Y. Wang, “A graphene oxide-based FRET sensor for rapid and sensitive detection of matrix metalloproteinase 2 in human serum sample,” Biosens Bioelectron., 2013, 47, 445.
[42] Q. Li, F. Fan, Y. W. W. Feng and P. Ji, “Enzyme immobilization on carboxyl-functionalized graphene oxide for catalysis in organic solvent,” Ind. Eng. Chem. Res., 2013, 52, 6343.
[43] R. Imani, S. H. Emami and S. Faghihi, “Synthesis and characterization of an octaarginine functionalized graphene oxide nano-carrier for gene delivery applications,” Physical chemistry chemical physics: PCCP., 2015, 9, 17: 6328.
[44] M. Li, X. Yang, J. Ren, K. Qu and X. Qu, “Using graphene oxide high near-infrared absorbance for photothermal treatment of alzheimer’s disease,” Adv. Mater., 2012, 24, 1722.
[45] A. Mathkar, D. Tozier, P. Cox, P. Ong, C. Galande, K. Balakrishnan, et al. “Controlled, stepwise reduction and band gap manipulation of graphene oxide,” J. Phys. Chem. Lett., 2012, 3, 986.
[46] F. OuYang, B. Huang, Z. Li, J. Xiao, H. Wang and H. Xu, “Chemical Functionalization of Graphene Nanoribbons by Carboxyl Groups on Stone-Wales Defects,” J. Phys. Chem. C., 2008, 112, 12003.
[47] T. Yang, L. H. Liu, J. W. Liu, M. L. Chen and J. H. Wang, “Cyanobacterium metallothionein decorated graphene oxide nanosheets for highly selective adsorption of ultra-trace cadmium,” J. Mater. Chem., 2012, 22, 21909.
[48] H. Y. Wu, K. J. Lin, P. Y. Wang, C. W. Lin, H. W. Yang, et al. “Polyethylene glycol-coated graphene oxide attenuates antigen-specifi IgE production and enhanced antigen-induced T-cell reactivity in ovalbumin-sensitized BalB/c mice,” Int. J. Nanomedicine., 2014, 9, 4257.
[49] W. Sun, Y. Zhang, X. Ju, G. Li, H. Gao and Z. Sun, “Electrochemical deoxyribonucleic acid biosensor based on carboxyl functionalized graphene oxide and poly-l-lysine modified electrode for the detection of tlh gene sequence related to vibrio parahaemolyticus,” Anal. Chim. Acta., 2012, 752, 39.
[50] W. C. Bigelow, D. L Pickett and W. A. Zisman, “Oleophobic monolayers: I. Films adsorbed from solution in non-polar liquids,” Journal of Colloid, Science., 1946, 1, 513.
[51] R. G. Nuzzo and D. L. Allara, “Adsorption of bifunctional organic disulfides on gold surfaces,” J. Am. Chem. Soc., 1983, 105, 4481.
[52] H. Sellers, A. Ulman, Y. Shnidman, and J. E. Eilers, “Structure and binding of alkanethiolates on gold and silver surfaces: implications for self-assembled monolayers,” J. Am. Chem. Soc., 1993, 115, 9389.
[53] A. Ulman, “Formation and structure of self-assembled monolayers,” Chem. Rev., 1996, 96, 1533.
[54] S. Löfås and B. Johnsson, “A novel hydrogel matrix on gold surfaces in surface plasmon resonance sensors for fast and efficient covalent immobilization of ligands,” J. Chem. Soc., Chem. Commun., 1990, 21, 1526.
[55] R. G. Nuzzo, F. A. Fosco, and D. L. Allara, “Spontaneously organized molecular assemblies. 3. Preparation and properties of solution adsorbed monolayers of organic disulfides on gold surfaces,” J. Am. Chem. Soc., 1987, 109, 2358.
[56] M. D. Porter, T. B. Bright, D. L. Allara, and C. E. D. Chidsey, “Spontaneously organized molecular assemblies. 4. Structural characterization of n-alkyl thiol monolayers on gold by optical ellipsometry, infrared spectroscopy, and electrochemistry,” J. Am. Chem. Soc., 1987, 109, 3559.
[57] B. Johnsson, S. Löfås, and G. Lindquist, “Immobilization of proteins to a carboxymethyldextran-modified gold surface for biospecific interaction analysis in surface plasmon resonance sensors,” Anal. Biochem., 1991, 198, 268.
[58] A. J. A. El-Haija, “Effective medium approximation for the effective optical constants of a bilayer and a multilayer structure based on the characteristic matrix technique,” J. Appl. Phys., 2003, 93, 2590.
[59] H. Lin, M. F. Pantoja, S. Member, L. D. Angulo, J. Alvarez, R. G. Martin, S. G. Garcia, “FDTD modeling of graphene devices using complex conjugate dispersion material model,” IEEE. Microw. Wirel. Compon. Lett., 2012, 22, 12, 612.
[60] B. Nguyen, F. A. Tanious, W. D. Wilson, “Biosensor-surface plasmon resonance: Quantitative analysis of small molecule–nucleic acid interactions,” Methods. 2007, 42, 150.
[61] K. A. Mkhoyan, A. W. Contryman, J. Silcox, D. A. Stewart, G. Eda, C. Mattevi, S. Miller and M. Chhowalla, “Atomic and electronic structure of graphene-oxide,” Nano Lett., 2009, 9, 3, 1058.
[62] I. Ozaytekin, “The effect of carboxylic acid group on conductivity of the aromatic polyazomethines and char composites,” Polym. Compos., 2014, 372.
[63] Y. Liu, R. Deng, Z. Wang and H. Liu, “Carboxyl-functionalized graphene oxide–polyaniline composite as a promising supercapacitor material,” J. Mater. Chem., 2012, 22, 13619.
[64] H. Zhou, X. Wang, P. Yu, X. Chen, and L. Mao, “Sensitive and selective voltammetric measurement of Hg2+ by rational covalent functionalization of graphene oxide with cysteamine,” Analyst, 2012, 137, 305.
[65] H. Zhang, Y. Sun, S. Gao, J. Zhang, H. Zhang, and D. Song, “A novel graphene oxide-based surface plasmon resonance biosensor for immunoassay,” Small, DOI: 10.1002/smll. 2013, 201202958.
[66] J. Zhang, Y. Sun, B. Xu, H. Zhang, Y. Gao, H. Zhang, and D. Song, “A novel surface plasmon resonance biosensor based on graphene oxide decorated with gold nanorod–antibody conjugates for determination of transferrin,” Biosens Bioelectron., 2013, 45, 230.
[67] M. J. E. Fischer, “Amine coupling through EDC/NHS: a practical approach,” Methods Mol Biol., 2010, DOI: 10.1007/978-1-60761 -670-2_3.
[68] A. Kausaite, M. V. Dijk, J. Castrop, A. Ramanaviciene, J. P. Baltrus, J. Acaite, and A. Ramanavicius, “Surface plasmon resonance label-free monitoring of antibody antigen interactions in real time,” Biochem Mol Biol Educ., 2007, 35, 57.
[69] C. Q. Xiao, F. L. Jiang, B. Zhou, R. Li, and Y. Liu, “Interaction between a cationic porphyrin and bovine serum albumin studied by surface plasmon resonance, fluorescence spectroscopy and cyclic voltammetry,” Photochem Photobiol Sci., 2011, 10, 1110.
[70] A. Sadana and Z. Chen, “A fractal analysis of the influence of non-specific binding on antigen-antibody binding kinetics for biosensor applications,” Biosens Bioelectron., 1996, 11(8), 769.
[71] D. G. Myszka, “Kinetic analysis of macro mo le cular inte ractions using surface plasmon resonance biosensors,” Curr. Opin. Biotechnol., 1997, 8:50-57.
[72] B. C. D. Villano, S. Brennan, P. Brock, C. Bucher, V. Llu, M. McClure, B. Rake, S. Space, B. Westrick, H. Schoemaker, and V. A. Zurawski, Jr, “Radioimmunometric assay for a monoclonal antibody-defined tumor marker, CA 19-9,” Clin. Chem., 1983, 29(3): 549-552.
[73] H. Koprowski, Z. Steplewski, K. Mitchell, M. Herlyn, D. Herlyn, and P. Fuhrer, “Colorectal carcinoma antigens detected by hybridoma antibodies,” Somati. Cell. Genet., 1979, 5: 957–972.
[74] H. Kalthoff, C. Kreiker, W-H. Schmiegel, H. Greten and H-G. Thiele, “Characterization of CA 19-9 bearing mucins as physiological exocrine pancreatic secretion products,” Cancer Res., 1986, 46: 3605–3607.
[75] Y. Haga, S. Horiuchi, Y. Morino and M. Akagi, “Partial purification and characterization of CA19-9 antigen from the ascitic fluid of a patient with pancreatic cancer,” Clin. Biochem., 1989, 22: 363–368.
[76] J. Fujita, N. Dobashi1, Y. Ohtsuki, Y. Ueda1, S. Bandoh1, I. Yamadori and J. Takahara, “Detection of large molecular weight cytokeratin 8 as carrier protein of CA19–9 in non-small-cell lung cancer cell lines,” Br. J. Cancer., 1999, 81(5):769-773.
[77] J.W. Chung, R. Bernhardt and J.C. Pyun, “Additive assay of cancer marker CA 19-9 by SPR biosensor,” Sens. actuators. B., 2006, 118:28-32.