研究生: |
陳信融 Chen, Shin-Rung |
---|---|
論文名稱: |
以固態電解質與多孔矽電極實現抗壓耐震型超級電容之技術開發 Development of load-bearing and anti-shock supercapacitors with solid electrolyte and porous silicon Electrodes |
指導教授: |
楊啓榮
Yang, Chii-Rong |
學位類別: |
碩士 Master |
系所名稱: |
機電工程學系 Department of Mechatronic Engineering |
論文出版年: | 2020 |
畢業學年度: | 108 |
語文別: | 中文 |
論文頁數: | 118 |
中文關鍵詞: | 超級電容 、ICP-RIE 、PAECE 、化學氣相沉積 、石墨烯 、二氧化釕 、固態電解質 |
英文關鍵詞: | Supercapacitor, ICP-RIE, PAECE, CVD, Graphene, RuO2, Solid electrolyte |
DOI URL: | http://doi.org/10.6345/NTNU202001413 |
論文種類: | 學術論文 |
相關次數: | 點閱:209 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
超級電容(Supercapacitors)擁有快速充放電、功率密度高、元件壽命長等優點,可應用於行動通訊、車輛運輸、智慧電網等領域。然而,目前超級電容的製作技術中,許多是利用平面金屬電極,再加上碳海綿、碳氣凝膠或電紡絲碳纖維等3D多孔碳結構,意圖以增加碳活性材料之比表面積的方式,達到提高電容器功率密度之目的。然而,這些平面金屬加上3D多孔碳結構的電極,當元件受到大應力、高速撞擊與震動的作用下,這種平面金屬/多孔碳結構將產生嚴重的的脫層或塌陷而失效,使其無法應用於國防工業、航天太空、電動載具等抗壓耐震需求之超級電容上。
因此,本研究將使用三種製程方式製作矽基電極,第一種製程只使用光輔助電化學蝕刻(Photo-assisted electrochemical etching, PAECE)製程,在參數為氫氟酸10 wt% 界面活性劑酒精1 wt%、偏壓為3.5 V、蝕刻時間為8 hr的情況下,可以得到深度約為222 μm的隨機矽孔洞結構;第二種製程為使用黃光製程與反應性離子蝕刻技術,事先定義出陣列圖案的蝕刻窗後,再以光輔助電化學蝕刻技術製作,在參數為氫氟酸2.5 wt%、界面活性劑 DC 1 wt%、偏壓3 V、蝕刻時間 2 hr之下完成深度約為162 μm之矽孔洞結構;第三種製程為先使用ICP-RIE技術製作巨孔洞陣列結構,再以光輔助電化學蝕刻技術粗化孔洞結構內壁,參數為氫氟酸2.5 wt%、界面活性劑 DC 5 wt%、偏壓1 V、蝕刻時間 2 hr。三種多孔矽結構完成後,分別使用化學氣相沉積(Chemical vapor deposition)在其表面生成碳膜,此可鈍化多孔矽表面電荷陷阱(Surface charge traps)並增加導電性,再將混拌石墨烯薄片(graphene)、二氧化釕(RuO2)、高分子材料(PVA)的酸性電解液,以真空抽氣方式滲入多孔結構中並固化,以實現高抗壓耐震性超級電容之開發,後續再利用恆電位儀進行C-V特性曲線(C-V curve)量測、恆電流充放電曲線(Galvanostatic charge/discharge curve)等量測分析。由於使用第二種製備法之矽基電極在量產結構時遇到稜線蝕刻過度的問題,而不適用於超級電容之製作,第三組製程則是在組裝測試之後,C-V曲線中的電壓與電流呈線性關係,恆電流充放電曲線則是出現了充電進去之後電卻放不掉的現象,代表電容內阻過高,從這兩點推測選用之晶片阻值過高(>4000 –cm)導致電容無法正常運作,因此本研究先將重心放在第一種製程使用單純光輔助電化學蝕刻製作矽基電極,量測後發現在混入石墨烯 5 wt%以及二氧化釕 5 wt%的固態超級電容,在0.127 A/g的電流密度下graphene/RuO2的電容性能為1.5 F/g,並且經由50次循環充放電之後,仍保有88%的電容保持率,在承受30 g的加速度之下依舊保擁有95%的電容保持率,電容需負荷超過24.5 KPa之壓應力(2×2 cm2的電容承受1 kg)後才會破損,在此狀態下電容值仍然保有原有性能之55%。
Supercapacitors have the advantages of rapid charging/discharging, high power density and long life time, applicable to the fields of mobile communications, vehicle transportation and smart grid. Most current fabrication techniques of supercapacitor utilize planar metal electrodes, appended 3D porous carbon structures such as carbon sponge, carbon aerogel or electrospun carbon fiber. By increasing the specific surface area of the carbon active materials, the power density of the supercapacitor can be improved. However, these planar metal/porous carbon structures will produce serious delamination or collapse failure under large stress, high-speed impact and vibration, making it cannot be applied to the fields which demands load-bearing and anti-shock, like defense industry, aerospace technology, and electric vehicles.
Therefore, this study will use three process to make silicon-based electrodes. The first process only uses the PAECE process, in the case of 10 wt% HF, 1 wt% surfactant alcohol, 3.5 V bias voltage, and 8 hr etching time, a random silicon hole structure with a depth of about 222 μm can be obtained; the second process is to use lithography process and RIE technology, after defining the etching window of the array pattern, it is made by PAECE technology, in the case of 2.5 wt% HF, 1 wt% surfactant DC, 3 V bias voltage, and 2 hr etching time, a silicon structure with a depth of about 162 μm can be obtained; the third process is to first use ICP-RIE technology to make a marcoporous array structure, and then use PAECE technology to roughen the inner wall of the hole structure. The parameters are 2.5 wt% HF, 5 wt% surfactant DC, 1 V bias voltage, and 2 hr etching time. After the three porous silicon structures are completed, structure surface will then be deposited a carbon film by CVD for increasing its chemical stability and conductivity. The electrolyte will be formed by using polymer materials as substrate, mixed with graphene flakes, further doped with transition metal oxide (RuO2). Coated on the structure surface, placed the specimen in a vacuum chamber, and the polymer electrolyte is infiltrated into the porous silicon structures by means of vacuum suction, and then the solid electrolyte can be formed to achieve the development of high load-bearing and anti-shock supercapacitor, and then measure C-V curve and Galvanostatic charge/discharge curve by potentiostat.
Since the silicon-based electrode using the second process encounters the problem of excessive ridgeline etching during the mass production of the structure, it is not suitable for the production of supercapacitors. The third process encounters a linear relationship between voltage and current in C-V curve after the assembly test. The GCD curve shows the phenomenon that the current cannot be discharged after charging, which means that the internal resistance of the capacitor is too high. From these two points, it is speculated that the selected chip resistance is too high and the capacitor cannot operate normally. Therefore, this research focuses on the first process using pure PAECE to make silicon-based electrodes. The capacitance of 5 wt% graphene and 5 wt% RuO2 is 1.5 F/g at 0.127 A/g. And 88% of the capacitance retention rate is still maintained at 50th cycle, and 95% of the capacitance retention rate is still maintained under the acceleration of 30 g. The capacitor load will not be damaged until it exceeds 24.5 kPa, and the capacitance value still retains 55% of the original performance.
1. A. Uhir, “Electrolytic shapping of germanium and silicon”, Bell System Tech. Journal, vol. 35 (1956) pp. 333-341.
2. D. R. Turner, “Electropolishing Silicon in Hydrofluoric Acid Solutions”, Journal of The Electrochemical Society, vol. 105 (1958) pp. 402-408.
3. Y. Watanabe, Y. Arita, T. Yokoyama, and Y. Igarashi, “Formation and properties of porous silicon and its application”, Journal of the Electrochemical society, vol. 122 (1975) pp. 1351-1538.
4. A. Richter, “Current-induced light emission from a porous silicon device’’, IEEE Electron Device Letter, vol. 12 (1991) pp. 691-692.
5. P.M. Fauchet, L. Tsybeskov, S.P. Duttagupta, and K.D. Hirschman, ‘‘Stable photoluminescence and electroluminescence from porous silicon’’, Thin solid films, vol. 297 (1997) pp. 254-260.
6. Claudia Pacholski, ‘‘Photonic Crystal Sensors Based on Porous Silicon’’, Sensors, vol. 13 (2013) pp. 4694-4713.
7. W. Lang, P. Steiner, and H. Sandmaier, ‘‘Porous silicon: A novel material for microsystems’’, Sensors and Actuators A, 51 (1995) pp. 31-36.
8. R. L. Smith, S. F. Chuang, and S. D. Collins, ‘‘A theoretical model of the formation morphologies of porous silicon”, Journal of Electronic Materials, vol. 17 (1988) pp. 533-541.
9. V. Lehmann, ‘‘The Physics of Macropore Formation in Low Doped n‐Type Silicon’’, Journal of the Electrochemical Society, vol. 140 (1993) pp. 2836-2843.
10. V. Lehmann, ‘‘Porous silicon formation and other photoelectrochemical effects at silicon electrodes anodized in hydrofluoric acid’’, Applied Surface Science, vol. 106 (1996) pp. 402-405.
11. M. D. B. Charlton, H. W. Lau, and G. J. Parker, ‘‘High aspect ratio photo-assisted electro-chemical etching of silicon and its application for the fabrication of quantum wires and photonic band structures’’, Microengineering Applications in Optoelectronics, (1996) pp. 1-9.
12. A. Splinter, J. Stürmann, and W. Benecke, ‘‘New porous silicon formation technology using internal current generation with galvanic elements’’, Sensors and Actuators A, vol. 92 (2001) pp. 394-399.
13. C. M. A Ashruf, P. J French, P. M. M. C Bressers, and J. J. Kelly, ‘‘Galvanic porous silicon formation without external contacts’’, Sensors and Actuators A, vol. 74 (1999) pp. 118-122.
14. S. Izuo, H. Ohji and P. J. French, ‘‘A novel electrochemical etching technique for n-type silicon’’, Sensors and Actuators A, vol. 97-98 (2002) pp. 720-724.
15. G. Barillaroa, A. Nanninia and M. Piotto, ‘‘Electrochemical etching in HF solution for silicon micromachining’’, Sensors and Actuators A, vol. 102 (2002) pp. 195-201.
16. G. D. Arrigo, S. Coffa, and C. Spinella, ‘‘Advanced micromachining processes for micro-opto-electromechanical components and devices’’, Sensors and Actuators A, vol. 99 (2002) pp. 112-118.
17. H. Ohji, P. J. Trimp, and P. J. French, ‘‘Fabrication of free standing structure using single step electrochemical etching in hydrofluoric acid’’, Sensors and Actuators, vol. 73 (1999) pp. 95-100.
18. http://www.tecategroup.com/ultracapacitors-supercapacitors/ultracapacitor-FAQ.php
19. R. Kötz and M. Carlen, ‘‘Principles and applications of electrochemical capacitors’’, Electrochimica Acta, vol. 45 (2000) pp. 2483-2498.
20. https://en.wikipedia.org/wiki/Supercapacitor.
21. https://www.asutpp.ru/ionistor.html
22. K. Jost, G. Dion and Y. Gogotsi, ‘‘Textile energy storage in perspective’’, Journal of Materials Chemistry A, vol. 2 (2014) 10776.
23. .H. Wang, C. Zhu, D. Chao, Q. Yan & Fan. H. J, ‘‘Nonaqueous Hybrid Lithium-Ion and Sodium-Ion Capacitors’’, Advanced Materials, vol. 29 (2017) 1702093.
24. 胡光武等人, 化工进展, 2017 年第36卷第8期, 2978-2985.
25. L. L. Zhang, R. Zhou and X. S. Zhao, ‘‘Graphene-based materials as supercapacitor electrodes’’, Journal of Materials Chemistry, vol. 20 (2000) pp. 5983-5992.
26. J. Gamby, P. L. Taberna, P. Simon, and J. F. Fauvarque, ‘‘Studies and characterisations of various activated carbons used for carbon/carbon supercapacitors’’, Journal of Power Sources, vol. 101 (2001) pp. 109-116.
27. C. Kim, ‘‘Electrochemical characterization of electrospun activated carbon nanofibres as an electrode in supercapacitors’’, Journal of Power Sources, vol. 142 (2005) pp. 382-388.
28. D. Yu and L. Dai, ‘‘Self-Assembled Graphene/Carbon Nanotube Hybrid Films for Supercapacitors’’, Journal of Physical Chemistry Letters, vol. 1 (2010) pp. 467-470.
29. J. S. Liu et al., Thesis for Doctor of Materials Engineering Tatung University, 2013.
30. A. J. bard and L. R. Faulkner, John Wiley & Sons, New York (1998).
31. http://big5.baike.qianzhan.com/detail/bk_027cd9fa.html.
32. M. Ue, K. Ida, S. Mori, ‘‘Electrochemical Properties of Organic Liquid Electrolytes Based on Quaternary Onium Salts for Electrical Double‐Layer Capacitors’’, Journal of Electrochemical Society, vol. 141 (1994) pp. 2989-2996.
33. J. S. Liu et al., Thesis for Doctor of Materials Engineering Tatung University, 2013.
34. V. Lehmann, F. Hofmann, F. Möller, and U. Grüning, “Resistivity of porous silicon: a surface effect’’, Thin Solid Films, vol. 255 (1995) pp. 20-22.
35. K. Grigoras, J. Keskinen, L. Grönberg, J. Ahopelto, and M. Prunnila, “Coated Porous Si for High Performance On-Chip Supercapacitors”, Journal of Physics, Conference Series 557 (2014) 012058.
36. K. Grigoras, J. Keskinen, L. Grönberg, E. Yli-Rantala, S. Laakso, H. Välimäki, P. Kauranen, J. Ahopelto, and M. Prunnila, “Conformal titanium nitride in a porous silicon matrix: A nanomaterial for in-chip supercapacitors”, Nano Energy, vol. 26 (2016) pp. 340-345.
37. L. Oakes, A. Westover, J. W. Mares, S. Chatterjee, W. R. Erwin, R. Bardhan, S. M. Weiss, and C. L. Pint, “Surface engineered porous silicon for stable, high performance electrochemical supercapacitors”, Scientific Reports, 3 : 3020 (2013).
38. S. Ortaboy, J. P. Alper. F. Rossi, G. Bertoni, G. Salviati, C. Carraro, and R. Maboudian, “MnOx-decorated carbonized porous silicon nanowire electrodes for high performance supercapacitors”, Energy & Environmental Science, vol. 10 (2017) pp. 1505-1516.
39. E. A. Seddon, K. R. Seddon, “The Chemistry of Ruthenium”, Elsevier science publishers, vol. 19 (1984).
40. W. D. Ryden, A. W. Lawson, C. C. Sartain, "Electrical transport properties of IrO2 and RuO2", Physical Review B, vol. 1 (1970) pp. 1494-1500.
41. C. W. Allen, L. E. Rehn, and H. Wiedersich, “Cascade‐driven migration of structural interfaces: A new type of irradiation‐induced phase transformation”, Applied physics letters, vol. 50 (1987) pp. 1876.
42. P. A. Mini, A. Balakrishnan, S. V. Nair, and K. R. V. Subramanian, “Highly super capacitive electrodes made of graphene/poly(pyrrole)”, Chemical communications, vol. 47 (2011) pp. 5753-5755.
43. A. A. Bolzan, C. Fong, B. J. Kennedy, and C. J. Howard, “Structural Studies of Rutile‐Type Metal Dioxides”, Acta crystallographica section b, vol. B53 (1997) pp. 373-380.
44. L. A. Bursill, I. M. Reaney, D. P. Vijay, and S. B. Desu, “Comparison of lead zirconate titanate thin films on ruthenium oxide and platinum electrodes”, Journal of applied physics, vol. 75 (1994) pp. 1521-1525.
45. L. Krusin‐Elbaum, M. Wittmer, and D. S. Yee, “Characterization of reactively sputtered ruthenium dioxide for very large scale integrated metallization”, Applied physics letters, vol. 50 (1987) pp. 1879-1881.
46. S. Trasatti, and G. Buzzanca, “Ruthenium dioxide: a new interesting electrode material. Solid state structure and electrochemical behaviour”, Journal of electroanalytical chemistry and interfacial electrochemistry, vol. 29 (1971) pp. 1-5.
47. D. Galizzioli, F. Tantardini, and S. Trasatti, “Ruthenium dioxide: a new electrode material. I. Behaviour in acid solutions of inert electrolytes”, Journal of applied electrochemistry, vol. 4 (1974) pp. 57-67.
48. S. Yan, H. Wang, P. Qu, Y. Zhang, Z. Xiao, “RuO2/carbon nanotubes composites synthesized by microwave-assisted method for electrochemical supercapacitor”, Synthetic metals, vol. 159 (2009) pp. 158-161.
49. https://curiosoando.com/que-es-el-grafeno
50. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric Field Effect in Atomically Thin Carbon Films”, Science, vol. 306 (2004) pp. 666-669.
51. http://nobelprize.org/nobel_prizes/physics/laureates/2010/
52. C. Y. Su, “Graphene: The applications in optical electronics and thermal management”, SunKen (2013).
53. C. Lee, X. Wei1, J. W. Kysar, and J. Hone, “Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene”, Science, vol. 321 (2008) pp.385-388.
54. R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine Structure Constant Defines Visual Transparency of Graphene”, Science, vol. 320 (2008) pp.1308-1315.
55. H. Wang, Q. Hao, X. Yang, L. Lu, and X. Wang, “Graphene oxide doped polyaniline for supercapacitors”, Electrochemistry communications, vol. 11 (2009) pp. 1158-1161.
56. W. Lv, D.-M. Tang, Y.-B. He, C.-H. You, Z.-Q. Shi, X.-C. Chen, C.-M. Chen, P.-X. Hou, C. Liu, and Q.-H. Yang, “Low-Temperature Exfoliated Graphenes: Vacuum-Promoted Exfoliation and Electrochemical Energy Storage”, ACS nano, vol. 3 (2009) pp. 3730-3736.
57. C. Liu, Z. Yu, D. Neff, A. Zhamu, and B. Z. Jang, ”Graphene-Based Supercapacitor with an Ultrahigh Energy Density”, Nano letters, vol. 10 (2010) pp. 4863-4868.
58. M. D. Stoller, S. Park, Y. Zhu, J. An, and R. S. Ruoff, “Graphene-Based Ultracapacitors”, Nano letters, vol. 8 (2008) pp. 3498-3502.
59. S. Li, M. Wang, and Y. Lian, “Electrochemical capacitors based on the composite of graphene and nickel foam”, SCIENCE CHINA, vol. 59 (2016) pp. 405-411.
60. D. Choi, E.-H. Yang, W. Gill, A. Berndt, J.-R. Park, and J. E. Ryu, “Fabrication and electrochemical characterization of super-capacitor based on three-dimensional composite structure of graphene and a vertical array of carbon nanotubes”, Journal of composite material, vol. 0 (2018) pp. 1-6.
61. A. S. Westover, J. W. Tian, S. Bernath, L. Oakes, R. Edwards, F. N. Shabab, S. Chatterjee, A. V. Anilkumar, and C. L. Pint, “A Multifunctional Load-Bearing Solid-State Supercapacitor”, Nano letters, vol. 14 (2014) pp. 3197-3202.
62. A. S. Westover, B. Baer, B. H. Bello, H. Sun, L, Oakes, L. M. Bellan and C. L. Pint, “Multifunctional high strength and high energy epoxy composite structural supercapacitors with wet-dry operational stability”, Journal of materials chemistry, vol. 3 (2015) pp. 20097-20102.