研究生: |
魏川育 Wei, Chaun-Yu |
---|---|
論文名稱: |
高效率且高充放電速率之鋁離子二次電池的研究與電化學分析 The Study and Electrochemical Characterization of High-Efficiency Al-ion battery Under High Charge Rate |
指導教授: |
陳家俊
Chen, Chia-Chun |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2015 |
畢業學年度: | 103 |
語文別: | 中文 |
論文頁數: | 73 |
中文關鍵詞: | 鋁離子電池 、鋁金屬 、天然石墨 |
英文關鍵詞: | Aluminium-ion battery, Aluminium, Natural graphite |
論文種類: | 學術論文 |
相關次數: | 點閱:285 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
新型二次電池可應用於個人電子產品或大型機具中。鋁離子二次電池的氧化還原反應由三個電子進行轉換,所以能提供非常高的電容。它具有低成本、低可燃性的優點,但由於正極材料的不穩定、低放電電位、無明顯放電平台以及電量快速衰退等問題,導致近三十年沒有顯著的發展。近期一篇期刊討論到相關的鋁離子電池發展,但電量卻只有約70mAh/g。我們提出以鋁金屬作為負極、天然石墨作為正極材料的鋁離子電池。這種電池的工作原理,在負極是鋁金屬的沉積與溶解反應,正極則是負離子的嵌入與嵌出。實際測試後,發現電容量可高達108mAh/g、庫倫效率可達98%以上且1200次充放電後,電量並沒有出現明顯的衰退。
The development of new rechargeable battery systems could fuel various energy applications, from personal electronics to grid storage. Rechargeable aluminium based batteries offer the possibilities of low cost and low flammability, together with three electron redox properties leading to high capacity. However, research efforts over the past 30 years have encountered numerous problems, such as cathode material disintegration, low cell discharge voltage, capacitive behaviour without discharge voltage plateaus and insufficient cycle life with rapid capacity decay.Recently,Nature Publishing Group published a paper about Al-ion battery,but the specific capacity is only 70mAh/g. We present a rechargeable aluminium battery with high-rate capability that uses an aluminium metal anode and natural graphite cathode. The battery operates through the electrochemical depositionand dissolution of aluminium at the anode, and intercalation/de-intercalation of chloroaluminate anions in the graphite.The specific capacity is about 108mAh/g, a Coulombic efficiency of approximately 98% and without any decay after 1000 cycles.
1. H. Z. Wang, D. Y. C. Leung, M. K. H. Leung, M. Ni, A review on hydrogen production using aluminum and aluminum alloys. Renewable and Sustainable Energy Reviews 13, 845-853 (2009).
2. Q. Li, N. J. Bjerrum, Aluminum as anode for energy storage and conversion: a review. Journal of Power Sources 110, 1-10 (2002).
3. M. Armand, J. M. Tarascon, Building better batteries. Nature 451, 652-657 (2008).
4. C. Li, W. Ji, J. Chen, Z. Tao, Metallic Aluminum Nanorods: Synthesis via Vapor-Deposition and Applications in Al/air Batteries. Chemistry of Materials 19, 5812-5814 (2007).
5. A. J. Bard, L. R. Faulkner, Electrochemical methods: fundamentals and applications. (Wiley New York, 1980), vol. 2.
6. J. S. Wilkes, J. A. Levisky, R. A. Wilson, C. L. Hussey, Dialkylimidazolium chloroaluminate melts: a new class of room-temperature ionic liquids for electrochemistry, spectroscopy and synthesis. Inorganic Chemistry 21, 1263-1264 (1982).
7. J. J. Lee, I. T. Bae, D. A. Scherson, B. Miller, K. A. Wheeler, Underpotential Deposition of Aluminum and Alloy Formation on Polycrystalline Gold Electrodes from AlCl3 / EMIC Room‐Temperature Molten Salts. Journal of The Electrochemical Society 147, 562-566 (2000).
8. T. Jiang, M. J. Chollier Brym, G. Dubé, A. Lasia, G. M. Brisard, Electrodeposition of aluminium from ionic liquids: Part I—electrodeposition and surface morphology of aluminium from aluminium chloride (AlCl3)–1-ethyl-3-methylimidazolium chloride ([EMIm]Cl) ionic liquids. Surface and Coatings Technology 201, 1-9 (2006).
9. F. Endres, D. MacFarlane, A. Abbott, Electrodeposition from ionic liquids. (John Wiley & Sons, 2008).
10. S.-J. Pan, W.-T. Tsai, J.-K. Chang, I. W. Sun, Co-deposition of Al–Zn on AZ91D magnesium alloy in AlCl3–1-ethyl-3-methylimidazolium chloride ionic liquid. Electrochimica Acta 55, 2158-2162 (2010).
11. N. Jayaprakash, S. K. Das, L. A. Archer, The rechargeable aluminum-ion battery. Chemical Communications 47, 12610-12612 (2011).
12. G. BROWN, M. PARANTHAMAN, S. DAI, N. DUDNEY, A. MANTHIRAM, T. MCINTYRE, H. LIU. (WO Patent 2,012,044,678, 2012).
13. N. S. Hudak, Chloroaluminate-Doped Conducting Polymers as Positive Electrodes in Rechargeable Aluminum Batteries. The Journal of Physical Chemistry C, (2014)10.1021/jp500593d).
14. M. Armand, F. Endres, D. R. MacFarlane, H. Ohno, B. Scrosati, Ionic-liquid materials for the electrochemical challenges of the future. Nat Mater 8, 621-629 (2009).
15. L. D. Reed, E. Menke, The Roles of V2O5 and Stainless Steel in Rechargeable Al–ion Batteries. Journal of The Electrochemical Society 160, A915-A917 (2013).
16. J. V. Rani, V. Kanakaiah, T. Dadmal, M. S. Rao, S. Bhavanarushi, Fluorinated Natural Graphite Cathode for Rechargeable Ionic Liquid Based Aluminum-ion Battery. Journal of The Electrochemical Society 160, A1781-A1784 (2013).
17. P. Wasserscheid, W. Keim, Ionic Liquids—New “Solutions” for Transition Metal Catalysis. Angewandte Chemie International Edition 39, 3772-3789 (2000).
18. R. J. Borg, G. J. Dienes, An introduction to solid state diffusion. (Academic Press, 1988).
19. P. R. Gifford, J. B. Palmisano, An Aluminum/Chlorine Rechargeable Cell Employing a Room Temperature Molten Salt Electrolyte. Journal of The Electrochemical Society 135, 650-654 (1988).
20. R. T. Carlin, H. C. De Long, J. Fuller, P. C. Trulove, Dual Intercalating Molten Electrolyte Batteries. Journal of The Electrochemical Society 141, L73-L76 (1994).
21. S. Takahashi, L. A. Curtiss, D. Gosztola, N. Koura, M.-L. Saboungi, Molecular Orbital Calculations and Raman Measurements for 1-Ethyl-3-methylimidazolium Chloroaluminates. Inorganic Chemistry 34, 2990-2993 (1995).
22. S. Takahashi, N. Koura, S. Kohara, M. L. Saboungi, L. A. Curtiss, Technological and scientific issues of room-temperature molten salts. Plasmas & Ions 2, 91-105 (1999).
23. X. Zhang, N. Sukpirom, M. M. Lerner, Graphite intercalation of bis(trifluoromethanesulfonyl) imide and other anions with perfluoroalkanesulfonyl substituents. Materials Research Bulletin 34, 363-372 (1999).
24. B. Özmen-Monkul, M. M. Lerner, The first graphite intercalation compounds containing tris(pentafluoroethyl)trifluorophosphate. Carbon 48, 3205-3210 (2010).
25. F. Tuinstra, J. L. Koenig, Raman Spectrum of Graphite. The Journal of Chemical Physics 53, 1126-1130 (1970).
26. L. J. Hardwick, M. Hahn, P. Ruch, M. Holzapfel, W. Scheifele, H. Buqa, F. Krumeich, P. Novák, R. Kötz, An in situ Raman study of the intercalation of supercapacitor-type electrolyte into microcrystalline graphite. Electrochimica Acta 52, 675-680 (2006).
27. L. J. Hardwick, P. W. Ruch, M. Hahn, W. Scheifele, R. Kötz, P. Novák, In situ Raman spectroscopy of insertion electrodes for lithium-ion batteries and supercapacitors: First cycle effects. Journal of Physics and Chemistry of Solids 69, 1232-1237 (2008).
28. A. C. Ferrari, J. Robertson, Resonant Raman spectroscopy of disordered, amorphous, and diamondlike carbon. Physical Review B 64, 075414 (2001).
29. Meng-Chang Lin. An ultrafast rechargeable aluminium-ion battery.Nature 520, 324–328 (16 April 2015) doi:10.1038/nature14340