研究生: |
楊惠雅 Huey-Yea Yang |
---|---|
論文名稱: |
含硒、碲之過渡金屬(錳、鐵、釕)團簇化合物之合成及其物性、化性研究 |
指導教授: |
謝明惠
Shieh, Ming-Huey |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2000 |
畢業學年度: | 88 |
語文別: | 中文 |
論文頁數: | 140 |
中文關鍵詞: | 過渡金屬(錳、鐵、釕)團簇化合物 |
英文關鍵詞: | metal cluster |
論文種類: | 學術論文 |
相關次數: | 點閱:150 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
[1]含鐵(Fe)系統研究─
以[SeFe3(CO)9(COC3H3)]–為起始物與Ru3(CO)12依莫耳數1:1的比例,於丙酮中加熱反應可得SeRu4(CO)11(C3H3)及[Fe3(CO)9(C3H3)]–。當提高比例至1:1.67時,於甲醇、氰化烷及丙酮混合溶液中加熱,可得[HSeRu3(CO)9]–及[Ru6(CO)16C]2–。
運用理論計算來比較已知化合物(m3-E)Fe3(CO)9(m3-η2:η1:η3-
C(COCH3)(H)CCH2) (E = Se或Te)、Te2Fe2(CO)6(CHCCH2)2及Te2Fe2(CO)6(CHCCH2)(CH2C≡CH),其不同構形在能量上的差異。
[2]含釕(Ru)系統研究─
以Na2SeO3與Ru3(CO)12為起始物,依原子數比1:2.5於甲醇溶液中加熱,會產生一有趣結構的錯合物[Se4Ru10(CO)24(O2CCH3)]3–,因而激發其相關的高壓反應催化研究。再將此起始物於PPh3及CO的存在下加熱,則產生Ru3(CO)9(PPh3)3.THF;若只是在CO存在下加熱,則會得到[HSeRu3(CO)9]–。
[3]含錳(Mn)系統研究─
[Te2Mn4(CO)12]2–與Hg(OAc)2或者[Te2Mn3(CO)9]2–與Cu+ 進行反應,均可氧化得到一個三角雙錐結構的[Te2Mn3(CO)9]–。若[Te2Mn4-
(CO)12]2- 與過量Hg(OAc)2反應則會進一步產生雙錳化合物[Mn2(CO)6(m-OCOCH3)3]–。另一雙錳化合物[Mn2(CO)6(m-OCH3)3]–,則是利用[Te2Mn3(CO)9]–與4 M KOH於CH2Cl2/MeOH中反應生成。又[Te2Mn3(CO)9]2–/–、[Te2Mn4(CO)12]2–與Ru3(CO)12在不同條件下均會生成[HTeRu3(CO)9]–。另外由K2TeO3.H2O與Mn2(CO)10的反應系統中,得一結構特殊的化合物[Te4Mn6(CO)20] 2–.CH2Cl2。
利用電化學分析研究[E2Mn3(CO)9]–、[E2Mn3(CO)9]2–、[E2Mn4-
(CO)12]2-及[EFe3(CO)9]2–(E = S、Se或Te)的氧化還原性質。
[1]in Fe-system
The reaction of [SeFe3(CO)9(COC3H3)]– with Ru3(CO)12 in a molar ratio of 1:1 in acetone solution at 50℃ produces SeRu4(CO)11(C3H3) and [Fe3(CO)9(C3H3)]– . If the molar ratio of 1:1.67 is employed in refluxing MeOH/CH3CN/acetone mixed solutions, two different products, [HSeRu3(CO)9]– and [Ru6(CO)16C]2– , are obtained.
The minimal potential energies of the different conformations of the known compounds, (m3-E)Fe3(CO)9(m3-η2:η1:η3-C(COCH3)(H)CCH2) (E = Se or Te)、Te2Fe2(CO)6(CHCCH2)2 and Te2Fe2(CO)6(CHCCH2)(CH2C≡CH) are calculated and compared by Insight II program.
[2]in Ru-system
The treatment of Na2SeO3 and Ru3(CO)12 in an atom ratio of 1:2.5 in MeOH solution at 81℃ affords an interesting green cluster, [Se4Ru10-(CO)24(O2CCH3)]3- , which prompts us to explore the catalytic carbonylation of MeOH. If the reaction is pressurized with CO, [HSeRu3(CO)9]– is obtained. When the reaction is carried out in the presence of PPh3, Ru3(CO)9(PPh3)3.THF is yielded.
[3]in Mn-system
Trigonal bipyramidal cluster [Te2Mn3(CO)9]– can be prepared by oxidation of [Te2Mn4(CO)12]2– or [Te2Mn3(CO)9]2– . [Te2Mn3(CO)9]– can be further oxidized to form the dimanganese compound [Mn2(CO)6(m-OC(O)CH3)3]– or [Mn2(CO)6(m-OCH3)3]– under different conditions. On the other hand, the reaction of [Te2Mn3(CO)9]2–/– or [Te2Mn4(CO)12]2– with Ru3(CO)12 under different conditions leads to the formation of the triruthenium cluster [HTeRu3(CO)9]– . A novel new cluster, [Te4Mn6(CO)20] 2–.CH2Cl2, is synthesized from the reaction of K2TeO3.H2O and Mn2(CO)10.
Finally, the redox reactions of a series of clusters [E2Mn3(CO)9]–, [E2Mn3(CO)9]2– , [E2Mn4(CO)12]2- and [EFe3(CO)9]2– (E = S、Se or Te) are studied and compared by cyclic voltammetry
.
1. Somorjai, G. A. Chemistry in Two Dimension; Cornell University Press: New York, 1981.
2. (a)Forster, D. Adv. Organomet. Chem. 1979, 17, 255.
(b)Fernandez, M. K. et al. J. Organomet. Chem. 1992, 483, 337.
3. Heiber, W. Adv. Organomet. Chem. 1970, 8, 1.
4. Heiber, W.; Gruber, J. Z. Anorg. Allg. Chem. 1958, 296, 91.
5. (a)Nicholls, J. N. Polyhedron 1984, 3, 1307.
(b)Whitmire, K. H.; Lagrone, C. B.; Rheingold, A. L. Inorg. Chem. 1986, 25, 2472.
6. Schmid, G. Angew. Chem., Int. Ed. Engl. 1978, 17, 392; Angew. Chem. 1978, 90, 417.
7. Whitmire, K. H. J. Coord. Chem. B. 1988, 17, 95.
8. Shieh, M.; Chen, H.-S.; Yang, H.-Y.; Ueng, C.-H. Angew. Chem., Int. Ed. Engl. 1999, 38, 1252; Angew. Chem. 1999, 111, 1339.
9. Shieh, M.; Chen. P.-F.; Peng, S.-M.; Lee, G.-H. Inorg. Chem. 1993, 32, 459.
10. Wallis, J. M.; Mullar, G.; Schmidbaur, H. Inorg. Chem. 1989, 26, 458.
11. Shieh, M.; Tang, T.-F.; Peng, S.-M.; Lee, G.-H. Inorg . Chem. 1995, 34, 2797.
12. Wilkinson, G.; Stone, F. G. A.; Abel, E. W. Comprehensive Orangometallic Chemistry, Pergamon, Oxford 1982.
13. (a)Nast, R. Chem. Soc. (London) Spec. Publ. 1959, 13, 103.
(b)Carty, A. J. Pure & Appl. Chem. 1982, 54, 113.
14. (a)Hübel, W.; Braye, E. H.; Clauss, A.; Weiss, E.; Krüerke, Ü.; Brown, D. A.; King, G. S. D.; Hoogzand, C. J. Inorg. Nucl. Chem. 1959, 9, 204.
(b)Blount, J. F.; Dahl, L. F.; Hoogzand, C.; Hübel, W. J. Am. Chem. Soc. 1966, 88, 292.
(c)Hübel, W. in: Wender, I.; Pino (Eds), P. Organic Synthesis via Metal
Carbonyls, vol. 1, Interscience, New York, 1968, P. 273.
15. Seyferth, D.; Henderson, R. S. J. Am. Chem. Soc.. 1979, 101, 508.
16. Shieh, M.; Liou, Y.; Jeng, B.-W. Organometallics 1993, 12, 4926.
17. Shieh, M.; Liou, Y.; Peng, S.-M.; Lee, G.-H. Organometallics 1993, 12, 2212.
18. Shieh, M.; Sheu, C.-M.; Ho, L.-F.; Cherng, J.-J.; Jang, L.-F.; Ueng, C.-H. Inorg. Chem. 1996, 35, 5504.
19. (a)Shieh, M.; Shieh, M.-H. Organometallics 1994, 13, 920.
(b)Shieh, M.; Chen, P.-F.; Tsai, Y.-C.; Shieh, M.-H.; Peng, S.-M.; Lee, G.-H.
Inorg. Chem.1995, 34, 2251.
20. Shieh, M.; Tsai, Y.-C.; Shieh, M.-H.; Cherng, J.-J.; Chen, H.-S.; Ueng, C.-H.; Peng, S.-M.; Lee, G.-H. Organometallics 1997, 16, 456.
21. 陳鴻生,國立台灣師範大學碩士論文,1997
22. Young, G. H.; Raphael, M. V.; Wojcicki, A. Organometallics 1990, 9, 2417.
23. Shuchart, C. E.; Wojcicki, A. Organometallics 1994, 13, 1999.
24. Sappa, E.; Gambino, O.; Cetini, G. J. Organomet. Chem. 1972, 35, 375.
25. Draganjac, M.; Dhingra, S.; Huang, S.-P.; Kanatzidis, M. G. Inorg. Chem. 1990, 29, 590.
26. Huang, S.-P.; Kanatzidis, M. G. J. Am. Chem. Soc. 1992, 114, 5477.
27. 詹莉芬,國立台灣師範大學碩士論文,1997
28. Diéguez, M.; Claver, C.; Masdeu-Bultó, A. M.; Ruiz, A. Organometallics 1999, 18, 2107.
29. Limberg, C.; Hunger, M.; Kircher, P. Angew. Chem., Int. Ed. Engl. 1999, 38, 1105.
30. (a)Ryan, R. C.; Pittman Jr., C. U.; O’Connor, J. P. J. Am. Chem. Soc. 1977, 99, 1986.
(b)Pittman Jr., C. U.; Richermond, M. G.; Absi-Halabi-Mamum; Beurich, H.;
Richter, F.; Vahrenkamp, H. Angew. Chem., Int. Ed. Engl. 1982, 21, 786.
(c)Räsänen, T. M.; Jääskeläinen, S.; Pakkanen, T. A. J. Organomet. Chem.
1997, 548, 263.
31. (a)Süss-Fink, G.; Haak, S.; Ferrand, V.; Stoeckli-Evans, H. J. Chem. Soc., Dalton Trans. 1997, 3861.
(b)Süss-Fink, G.; Haak, S.; Ferrand, V.; Stoeckli-Evans, H. J. Mol. Catal. A.
1999, 143, 163.
32. ÓNeal, S. C.; Pennington, W. T.; Kolis, J. W. Inorg. Chem. 1990, 29, 3134.
33. (a)Fang, Z.-G.; Hor, T. S. A.; Mok, K. F.; Ng, S.-C.; Liu, L.-K.; Wen, Y.-S. Organometallics 1993, 12, 1009.
(b)Seidel, R.; Schnautz, B.; Henkel, G. Angew. Chem., Int. Ed. Engl. 1996, 35, 1710.
34. 黃國智,國立台灣師範大學博士論文,1998
35. Küllmer, V.; Vahrenkamp, H. Chem. Ber. 1977, 110, 228.
36. Huang, S. D.; Lai, C. P.; Barnes, C. L. Angew. Chem., Int. Ed. Engl. 1997, 36, 1854.
37. Holliday, R. L.; Roof, L. C.; Hargus, B.; Smith, D. U.; Wood, P. T.; Pennington, W. T.; Kolis, J. W. Inorg. Chem. 1995, 34, 4392.
38. Pake, G. E.; Estk, T. L. The Physical Principles of Electron Paramagnetic Resonance; W. A. Benjamin : Massachusetts, 1973.
39. (a)陳秋炳, 楊宗信, 科儀新知, 1983, 4, 78.
(b)余健治, 科儀新知, 1993, 14, 37.
40. Drago, R. S. Physical Methods for Chemists; Saunders Harcourt Brace Jovanovich: Orlando, 1992.
41. Schake, A. R.; Schmitt, E. A.; Conti, A. J.; Streib, W. E.; Huffman, J. C.; Hendrickson, D. N.; Christou, G. Inorg. Chem. 1991, 30, 3192.
42. Pecoraro, V. L.; Gelasco, A.; Kirk, M. L.; Kampf, J. W. Inorg. Chem. 1997, 36, 1829.
43. Nishida, Y.; Sasaki, Y.; Akamatsu, T.; Tsuchiya, K.; Ohba, S.; Sakamoto, M. Polyhedron 1998, 17, 235.
44. (a)Earnshaw, A. Introduction to Magnetochemistry; Academic Press: London, 1968.
(b)Van Vlenck, J. H. The Theory of Electronic and Magnetic Susceptibilities; Oxford University: London, 1932.
45. Kahn, O. J. of Magnetism and Magnetic Materials 1986, 54-57, 1459.
46. Adams, R. D.; Babin, J. E.; Kim, H.-S. Inorg. Chem. 1986, 25, 4321.
47. Mathieu, R.; Montauzon, D. D. J. Organomet. Chem. 1983, 252, C83.
48. Lewis, J.; Johnson, B. F. G.; Sankey, S. W.; Wong, K.; McPartlin, M.; Nelson, W. J. H. J. Organomet. Chem. 1980, 191, C3.
49. Shieh, M.; Tsai, Y.-C. Inorg. Chem. 1994, 33, 2319.
50. Mulay, L. N.; Boudreaux, E. A. Theory and Application of Molecular Paramagnetism; Wiley: New York, 1976.
51. Beswick, M. A.; Lewis, J.; Raithby, P. R. Angew. Chem., Int. Ed. Engl. 1997, 36 291.
52. Lewis, J.; Johnson, B. F. G. Pure & Appl. Chem. 1982, 54, 97.
53. Semmelhack, M. F.; Tamura, R. J. Am. Chem. Soc. 1983, 105, 4099.
54. Jaitner, P.; Winder, W. Inorg. Chim. Acta 1987, 134, 201.
55. Ye, B.-H.; Mak, T.; Williams, I. D.; Li, X.-Y. J. Chem. Soc., Chem. Commun. 1997, 1813.
56. (a)Holloway, C. E.; Melnik, M. J. Organomet. Chem. 1990, 396, 129.
(b)Treichel, P. M. Comprehensive Organometallic Chem.Ⅱ 1995, 6, 1.
57. Lewis, J.; Mabbs, F. E.; Weigold, H. J. Chem. Soc. (A), 1968, 1699.
58. 游宗憲,未發表結果.
59. 紀信宏,未發表結果.
60. Carty, A. J.; MacLaughlin, S. A.; Taylor, N. J. J. Am. Chem. Soc. 1981, 103, 2456.
61. (a)Johnson, B. F. G.; Layer, T. M.; Lewis, J.; Martin, A.; Raithby, P. R. J. Organomet. Chem. 1992, 429, C41.
(b)Mathur, P.; Hossain, Md. M.; Rashid, R. S. J. Organomet. Chem. 1993, 448, 211.
62. Layer, T. M.; Lewis, J.; Martin, A.; Raithby, P. R.; Wong, W. T. J. Chem. Soc., Dalton Trans. 1992, 3411.
63. (a)Harvey, P. P.; Drouin, M.; Zhang, T. Inorg. Chem. 1997, 36, 4998.
(b)Samara, C. D.; Psomas, G.; Ghristophorou, K.; Tangoulis, V.; Rapttopoulou, C. P.; Terzis, A.; Kessissoglou, D. P. J. Chem. Soc., Dalton Trans. 1996, 3737.
(c)Burger, K. S.; Chaudhuri, P.; Wieghardt, K. J. Chem. Soc., Dalton Trans. 1996, 247.
(d)Lee, C.-T.; Chiang, S.-F.; Chen, C.-T.; Chen, J.-D.; Hsiao, C.-D. Inorg. Chem. 1996, 35, 2930.
(e)Wu, C.-H.; Jang, H. G.; Rheingold, A. L.; Gutlich, P.; Hendrickson, D. Inorg. Chem. 1996, 35, 4137.
(f)Ito, S.; Okuno, T.; Matsushima, H.; Tokii, T.; Nishida, Y. J. Chem. Soc., Dalton Trans. 1996, 4037.
64. Ansell, G. B.; Bradley, J. S. Acta Cryst. 1980, B36, 726.
65. Churchill, M. R.; Wormald, J. J. Chem. Soc., Dalton Trans. 1974, 2410.
66. (a)Johnson, B. F. G.; Johnston, R. D.; Lewis, J. J. Chem. Soc. (A). 1968, 2865.
(b)Eady, C. R.; Johnson, B. F. G.; Lewis, J. J. Chem. Soc. (A). 1975, 2606.
(c)Eady, C. R.; Jackson, P. F.; Johnson, B. F. G.; Lewis, J.; Malatesta, M. C.; McPartlin, M.; Nelson, W. J. H. J. Chem. Soc., Dalton Trans. 1980, 383.
67. Adams, R. D.; Katahira, D. A. Organometallics 1982, 1, 53.
68. Voss, E. J.; Stern, C. L.; Shriver, D. F. Inorg. Chem. 1994, 33, 1087.
69. (a)Treichel, P. M.; Tegen, M. H. J. Organomet. Chem. 1985, 292, 385.
(b)Liaw, W.-F.; Ou, D.-S.; Li, Y.-S.; Lee, W.-Z.; Chuang, C.-Y.; Lee, Y.-P.; Lee, G.-H.; Peng, S.-M. Inorg. Chem. 1995, 34, 3747.
(c)Liaw, W.-F.; Chuang, C.-Y.; Lee, W.-Z.; Lee, C.-K.; Lee, G.-H.; Peng, S.-M. Inorg. Chem. 1996, 35, 2530.
(d)Liaw, W.-F.; Lee, W.-Z.; Wang, C.-Y.; Lee, G.-H.; Peng, S.-M. Inorg. Chem. 1997, 36, 1253.
(e)McDonald, J. W. Inorg. Chem. 1985, 24, 1734.
(f)Wieghardt, K.; Bossek, U.; Nuber, B.; Weiss, J.; Bonvoisin, J.; Corbella, M.; Vitols, S. E.; Girerd, J.-J. J. Am. Chem. Soc. 1988, 110, 7398 .
70. Cotton, F. A.; Wilkinson, G.; Murillo, C. A.; Bochmann, M. Advanced Inorganic Chemistry, John Wiley & Sons: New York 6th ed, 1999.