研究生: |
葉原良 Yeh, Yuan-Liang |
---|---|
論文名稱: |
表面鈍化在鈣鈦礦發光二極體的應用 The application of surface passivation on perovskite LEDs |
指導教授: |
趙宇強
Chao, Yu-Chiang |
口試委員: |
許經夌
Hsu, Ching-Ling 駱芳鈺 Luo, Fang-Yu 趙宇強 Chao, Yu-Chiang |
口試日期: | 2023/06/26 |
學位類別: |
碩士 Master |
系所名稱: |
物理學系 Department of Physics |
論文出版年: | 2023 |
畢業學年度: | 111 |
語文別: | 中文 |
論文頁數: | 57 |
中文關鍵詞: | 表面鈍化 、掌性 、萘乙胺 |
英文關鍵詞: | surface passivation, chirality, 1 --(1 Naphthyl)ethylamine |
DOI URL: | http://doi.org/10.6345/NTNU202300872 |
論文種類: | 學術論文 |
相關次數: | 點閱:90 下載:13 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
此論文分作兩部分,第一部分是表面鈍化在鈣鈦礦發光二極體的應用,第二部分為將掌性材料萘乙胺引入鈣鈦礦結構的嘗試。
在第一部分中,將以苄胺(benzylamine)及吡啶(pyridine)作為用於表面鈍化藥品,對鈣鈦礦進行表面鈍化。受到苄胺表面鈍化的鈣鈦礦薄膜,載子生命期由112.9116ns提升到了167.4956ns,光致發光量子產率由9.40%提升到了13.68%,發光二極體外部量子效率部分也有得到提升。在吡啶方面,受到吡啶表面鈍化的鈣鈦礦薄膜,其載子生命期亦提升到了156.7662ns,光致發光量子產率與發光二極體的外部量子效率有整體提升的現象,但提升的幅度不隨吡啶濃度提升而增加。受到芐胺表面鈍化的鈣鈦礦薄膜,在掃描式電子顯微鏡下呈現平坦化的現象。由X光繞射光譜得知,隨芐胺的濃度提升,鈣鈦礦中開始出現n=1的結構,而造成鈣鈦礦的發光強度下降。不過在發光二極體的量測上也發現,芐胺的表面鈍化會使電流密度下降,且下降的幅度比發光強度還大,因此造就了發光效率的提升。
第二部分旨在利用自行製備的溴化萘乙胺(NEABr),製做具有掌性的鈣鈦礦薄膜,再對其光二色性及圓偏振光致發光特性進行量測。經過一連串實驗,實驗結果與文獻有諸多差異。針對文獻中,製備鈣鈦礦薄膜須將基板存放於手套箱內七天後再量測的作法,進行實驗與探究。鈣鈦礦薄膜的光二色性光譜在保存於手套箱內的七天內,特徵峰的強度會有波動的情形,並在第七天的時候,特徵峰的強度會達到穩定的狀態。
This thesis is divided into two main topics, the first discusses the application of surface passivation on perovskite light emitting diodes (PLEDs); the other is the attempt to incorporate the chiral moecule 1-(1-Naphthyl)ethylamine (NEA) into the structure of perovskite.
The carrier lifetime of the perovskite film passivated by benzylamine was improved from 112.9116 ns to 167.4956 ns, the photoluminescence quantum yield was improved from 9.40% to 13.68%, and the external quantum efficiency of the light-emitting diode was also improved. In the case of pyridine, the carrier lifetime of the perovskite film passivated by pyridine was also improved to 156.7662 ns. However, no regularity was found in the change of photoluminescence quantum yield with the increase of surface passivation drug concentration, and the quantum efficiency of the light-emitting diode showed only a slight improvement, no trend was found with the change of concentration either.
The second part aims to fabricate chiral perovskite films with 1-(1-Naphthyl)ethylamine bromide (NEABr) prepared by myself, then measure their circular polarized luminescence and chiral dichroism properties to reproduce the experimental results in literature. However, after a series of experiments, there were many differences from the literature. Through experiment focusing on the method in literature, which requires storing the substrate in the glove box for 7 days before measuring. It turns out that storing the film for 7 days makes the CD spectra reach a steady peak value, which is easier to read.
Green, M., Ho-Baillie, A. & Snaith, H. The emergence of perovskite solar cells. Nature Photon 8, 506–514 (2014).
S.Luo and W.A. Daoud. Recent progress in organic–inorganic halide perovskite solar cells: mechanisms and material design. J. Mater, Chem. A 3, 8992-9010 (2015)
Zhanhua Wei and Jun Xing. The Rise of Perovskite Light-Emitting Diodes. J. Phys. Chem. Lett. 10, 11, 3035–3042 (2019)
Sutherland, B., Sargent, E. Perovskite photonic sources. Nature Photon 10, 295–302 (2016).
Yatao Zou, Muyang Ban, Yingguo Yang, Sai Bai, Chen Wu, Yujie Han, Tian Wu, Yeshu Tan, Qi Huang, Xingyu Gao, Tao Song, Qiao Zhang, and Baoquan SunACS. Boosting Perovskite Light-Emitting Diode Performance via Tailoring Interfacial Contact. ACS Appl. Mater. Interfaces 10, 28, 24320–24326 (2018)
Wang, H., Kosasih, F.U., Yu, H. et al. Perovskite-molecule composite thin films for efficient and stable light-emitting diodes. Nat Commun 11, 891 (2020).
A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka. Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells. J. Am. Chem. Soc. 131, 6050 (2009).
Yani Chen, Yong Sun, Jiajun Peng, Junhui Tang, Kaibo Zheng, Ziqi Liang. 2D Ruddlesden–Popper Perovskites for Optoelectronics. Advanced Materials, 30, 1703487 (2018).
Lin, H.; Zhou, C.; Tian, Y.; Siegrist, T.; Ma, B. Low-Dimensional Organ Metal Halide Perovskites. ACS Energy Lett. 3, 54– 62 (2018)
X.-K. Liu and F. Gao. Organic–Inorganic Hybrid Ruddlesden–Popper Perovskites: An Emerging Paradigm for High-Performance Light-Emitting Diodes. J. Phys. Chem. Lett. 9, 2251 (2018).
Farzaneh Arabpour Roghabadi, Maryam Alidaei, Seyede Maryam Mousavi, Tahereh Ashjari, Ali Shokrolahzadeh Tehrani, Vahid Ahmadi and Seyed Mojtaba Sadrameli. Stability progress of perovskite solar cells dependent on the crystalline structure: From 3D ABX3 to 2D Ruddlesden–Popper perovskite absorbers. J. Mater. Chem. A 7, 5898-5933. (2019)
Yang, X., Zhang, X., Deng, J. et al. Efficient green light-emitting diodes based on quasi-two-dimensional composition and phase engineered perovskite with surface passivation. Nat Commun 9, 570 (2018).
Leng, K., Fu, W., Liu, Y. et al. From bulk to molecularly thin hybrid perovskites. Nat Rev Mater 5, 482–500 (2020).
M. A. R. Laskar, W. Luo, N. Ghimire, A. H. Chowdhury, B. Bahrami, A. Gurung, K. M. Reza, R. Pathak, R. S. Bobba, B. S. Lamsal, K. Chen, M. T. Rahman, S. I. Rahman, K. Emshadi, T. Xu, M. Liang, W.-H. Zhang and Q. Qiao. Phenylhydrazinium Iodide for Surface Passivation and Defects Suppression in Perovskite Solar Cells. Adv. Funct. Mater 30, 2000778 (2020).
Long, M., Zhang, J., Guo, P., Zhang, K., Liu, C., Ye, Q., Wang, H. Surface Passivation with a Fluorocarbon-Based Pyridine Derivative for High-Crystallinity Perovskite Solar Cells with Efficiency Over 20% and Good Humidity Stability. ACS Appl. Energy Mater. 4, 10484– 10492 (2021).
Jana, M.K., Song, R., Liu, H. et al. Organic-to-inorganic structural chirality transfer in a 2D hybrid perovskite and impact on Rashba-Dresselhaus spin-orbit coupling. Nat Communications 11, 4699 (2020).
McCann, Edward and Mikito Koshino. Spin-orbit coupling and broken spin degeneracy in multilayer graphene. Phys. Rev. B 81, 241409(R) (2010).
S. D. Ganichev and L. E. Golub. Interplay of rashba/dresselhaus spin splittings probed by photogalvanic spectroscopy–a review. Phys. Status Solidi B 251, 1801 (2014).
Giglberger, S. et al. Rashba and dresselhaus spin splittings in semiconductor quantum wells measured by spin photocurrents. Phys. Rev. B 75, 035327 (2007).
Naaman, R.; Waldeck, D. H. Chiral-Induced Spin Selectivity Effect. J. Phys. Chem. Lett. 3 (16), 2178– 2187 (2012).
Long, G., Jiang, C., Sabatini, R. et al. Spin control in reduced-dimensional chiral perovskites. Nature Photon 12, 528–533 (2018).
Wang, F., Geng, W., Zhou, Y., Fang, H. H., & Tong, C. Phenylalkylamine passivation of organolead halide perovskites enabling high-efficiency and air-stable photovoltaic cells. Advanced Materials, 28(45), 9986-9992. (2016).
Long, M., Zhang, J., Guo, P., Zhang, K., Liu, C., Ye, Q., Wang, H. Surface Passivation with a Fluorocarbon-Based Pyridine Derivative for High-Crystallinity Perovskite Solar Cells with Efficiency Over 20% and Good Humidity Stability. ACS Appl. Energy Mater. 4, 10484 – 10492 (2021).
P.K. Giri, R. Kesavamoorthy, B.K. Panigrahi, K.G.M. Nair. Evidence for fast decay dynamics of the photoluminescence from Ge nanocrystals embedded in SiO2. Solid State Communications, 133, 4, 229-234 (2005).
Di Nuzzo, D.; Cui, L.; Greenfield, J. L.; Zhao, B.; Friend, R. H.; Meskers, S. C. J. Circularly Polarized Photoluminescence from Chiral Perovskite Thin Films at Room Temperature. ACS Nano, 14, 7610– 7616 (2020).
Ogawa, K.; Suzuki, H.; Zhong, C. C.; Sakamoto, R.; Tomita, O.; Saeki, A.; Kageyama, H.; Abe, R. Layered Perovskite Oxyiodide with Narrow Band Gap and Long Lifetime Carriers for Water Splitting Photocatalysis. J. Am. Chem. Soc. (2021).
Ahn, J.; Ma, S.; Kim, J.-Y.; Kyhm, J.; Yang, W.; Lim, J. A.; Kotov, N. A.; Moon, J. Chiral 2D Organic Inorganic Hybrid Perovskite with Circular Dichroism Tunable Over Wide Wavelength Range. J. Am. Chem. Soc. 142 (9), 4206– 4212 (2020).