簡易檢索 / 詳目顯示

研究生: 陳瑋如
Wei-Ru Chen
論文名稱: 碳分子篩薄膜應用於微機電-有機氣體濃縮晶片之研製
A Micro Fabricated Vapor Preconcentrator Employing Carbon Molecular Sieve Thin Film
指導教授: 呂家榮
Lu, Chia-Jung
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 98
中文關鍵詞: 吸附破出有機揮發性氣體前濃縮
英文關鍵詞: Adsorption, Breakthrough, VOCs, Preconcentration
論文種類: 學術論文
相關次數: 點閱:211下載:13
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以自製之高溫燒結碳膜,探討其對於空氣中揮發性有機化合物(VOCs)之吸附效能。首先在缺氧及高溫條件下,利用不同的碳化條件,將原料熱裂解成多孔性碳結構體,尋求最佳碳化條件,製出微孔結構活性碳,並進行活性碳之物理性質分析,包括:以場效發射式掃描電子顯微鏡(FE-SEM)觀察材料表面縱深形貌及微結構影像、以微孔隙分析儀測定BET比表面積等。為配合微機電製程開發,以陽極接合封裝的晶片型前濃縮裝置,將碳材與適當溶劑混合形成液態物,灌入晶片形成一層均勻薄膜,燒結成多孔吸附劑,進行相關探討。本研究以纖維素和saran當作實驗材料,其最佳製程條件分別為:從室溫開始,以10℃/min之速率升溫至600℃,並維持恆溫2hr; 以及以10℃/min之速率升溫至700℃,並維持恆溫1hr。本實驗依不同碳材之性能,找出適合其指標性氣體,探討其在碳材上之吸附與破出行為,並將此自製碳材送測比表面積分析,得到數據分別為308 m2/g和899 m2/g,皆可與市售碳材進行比較。其中由saran燒製所得的碳分子篩膜吸附容量極高,以toluene為標的氣體,此自製碳膜皆可達到103~104倍的高濃縮倍率。最後將各脫附實驗結果代入Wheeler model,推估吸附劑之吸附容量與動力係數,證明自製碳膜之耐用度良好,本研究所建立之吸附膜製程未來可以廣泛應用於各式微晶片採樣器設計上。

    In this study, the adsorption of volatile organic compounds (VOCs) by the synthesized porous carbon based film was investigated. For developing a VOC micro preconcentrator chips, we directly synthesized carbon based adsorbent film inside a pre-sealed and anodic bonded micro device. The precursor material was mixed with a solvent and injected into the chip channel to form a thin layer then pyrolyzed at high temperature and under the oxygen free atmosphere to form a microporous film. The physical properties including surface morphology, microstructure image, and BET surface area were inspected by FE-SEM and specific surface area & pore size distribution analyzer.
    When using cellulose as the starting material, it was slowly heated at a rate of 10 ℃/min from room temperature to 600 ℃ and maintained for two hours under high purity nitrogen atmosphere. While for saran, it was heated to a higher temperature 700 ℃ and maintained for only one hour. The BET surface area obtained was 308 m2/g and 899 m2/g, respectively, which was sufficiently comparable to many commercial adsorbents. The adsorption /desorption experiment was performed using toluene as the target VOC. It revealed that the carbon film obtained possesses very good performance where the preconcentration factor can achieve 103 to 104. Finally, we applied Wheeler model to assess the thermodynamic capacity of our synthesized adsorbent film. The carbon films in this study show good durability, reproducibility that can be applied in various designs of VOC micro preconcentrator chips.

    謝誌......................................................ii 中文摘要..................................................iii 英文摘要...................................................iv 目錄.......................................................v 圖目錄..................................................viii 表目錄....................................................xi 第一章 研究背景與原理......................................1 1.1 研究緣起.............................................1 1.2 吸附原理.............................................9 1.3 孔隙的定義..........................................12 1.4 吸附平衡............................................13 1.5 等溫吸附平衡─吸附等溫線..............................14 1.6 吸附理論...........................................19 1.7 晶片之陽極接合......................................23 1.8 熱電偶原理與測量....................................24 1.8.1原理.................................................24 1.8.2熱電偶測量............................................26 1.9 紅外線熱影像儀介紹......................................29 1.10場效發射式掃描電子顯微鏡.................................31 1.11 Wheeler model(吸附動力學方程)........................32 第二章 實驗部分..........................................37 2.1 藥品材料與耗材......................................37 2.2 儀器及設備..........................................39 2.2.1分析儀器..............................................39 2.2.2設備.................................................40 2.3 實驗製備方法及步驟 ...............................42 2.3.1 自製碳膜之製備方法.................................42 2.3.1.1纖維素.............................................42 2.3.1.2 saran............................................42 2.3.2 碳材的填入與封裝...............................43 2.3.2.1 玻璃毛細管型前濃縮器....................43 2.3.2.2晶片型前濃縮器..........................44 2.4 高溫爐系統操作步驟..................................50 2.5 前濃縮測量系統架設..................................51 2.6 LabVIEW程式之控制與數據的擷取處理...................54 2.7 本研究之整體實驗流程................................56 第三章 結果與討論........................................60 3.1 晶片加熱器穩定度與均勻度探討..........................60 3.2 纖維素自製碳膜......................................62 3.2.1材料鑑定─碳膜之微觀結構................................62 3.2.2 纖維素之比表面積分析..................................63 3.3 纖維素燒製時間探討..................................65 3.4 纖維素碳膜指標性氣體和濃度的探討......................68 3.5 saran碳膜.........................................72 3.5.1材料鑑定─碳膜之微觀結構................................72 3.5.2材料鑑定─比表面積分析...........................73 3.6 saran碳膜之吸附容量比較.............................75 3.7 saran─殘留率......................................79 3.8 saran─濃縮倍率.....................................81 3.9 混合氣體層析圖.....................................84 3.10自製碳膜應用他型結構微晶片前濃縮器........................86 第四章 結論.............................................91 參考文獻...................................................93 圖 目 錄 圖1.1 傳統與微機電製程前濃縮裝置的層析訊號峰....................7 圖1.2 活性碳之孔隙構造模型..................................12 圖1.3 等溫吸附曲線類型......................................14 圖1.4 Ⅳ型吸附等溫線各段所對應的物理吸附機制..................17 圖1.5 Langmuir理想區域化之單層吸附模型......................19 圖 1.6 Brunauer、Emmet和Teller(BET) 等人提出一種適合於多層吸附的模型....................................................20 圖1.7 (a) 陽極接合示意圖(b)陽極接合機制示意圖................23 圖1.8熱電偶測量示意圖.......................................26 圖1.9 中間金屬定律.........................................28 圖1.10中間溫度定律.........................................28 圖 1.11 氣體於吸附槽內之破出示意圖........................34 圖 2.1 毛細管型前濃縮器.....................................44 圖 2.2 晶片型前濃縮之3D俯視圖...............................45 圖 2.3 三組加熱器及兩組溫度感測器............................45 圖 2.4 流道中柱狀結構放大圖.................................46 圖 2.5 使用注射針筒灌入材料.................................46 圖 2.6 波型產生器示意圖.....................................48 圖2.7 晶片型前濃縮器封裝打線完成圖(a)正面(b)背面..............49 圖 2.8 鋁線於金電極上之放大圖................................49 圖 2.9 電路元件與電源供應器.................................51 圖 2.10 破出實驗系統圖(a)示意圖(b)實體照片...................52 圖 2.11 GPIB-Chem station 數據處理之介面....................55 圖 2.12 LabVIEW程式板......................................55 圖2.13本研究實驗流程........................................57 圖3.1加熱器之加熱再現性.....................................60 圖 3.2 紅外線熱儀下之晶片...................................61 圖3.3 未塗佈碳膜之空晶片....................................62 圖3.4 碳膜燒結完後長於柱狀體.................................63 圖3.5 自製纖維素碳膜........................................63 圖3.6 2hr 燒結之cellulose-碳膜之破出實驗結果.................66 圖3.7 1hr 燒結之cellulose-碳膜之破出實驗結果.................66 圖3.8 0hr 燒結之cellulose-碳膜之破出實驗結果.................67 圖3.9 比較cellulose碳膜採樣四種揮發性氣體破出圖...............69 圖3.10 1mg 纖維素碳膜採樣100 ppb acetone破出圖..............70 圖3.11 1mg 纖維素碳膜採樣10 ppb acetone破出圖...............71 圖3.12 由saran所燒製碳膜之SEM圖(放大倍率220倍)...............72 圖3.13由saran所燒製碳膜之SEM圖(放大倍率1.5k倍).............73 圖3.14丙酮於2mg saran碳膜吸附情形...........................75 圖3.15 乙醇於2mg saran碳膜吸附情形..........................76 圖3.16 甲醇於2mg saran碳膜吸附情形..........................77 圖3.17 高流速下,乙醇於2mg saran碳膜吸附情形.................78 圖3.18 高流速下,苯於2mg saran碳膜吸附情形...................78 圖3.19 200ppb benzene 、toluene 於saran碳膜殘留情形........79 圖3.20 200ppb toluene於saran碳膜濃縮情形...................83 圖3.21 saran碳膜濃縮脫附10種有機揮發氣體混合物之層析...........85 圖3.22 銀線注入口..........................................87 圖3.23 四條沉積於微流道之銀線................................88 圖3.24 晶片全圖............................................83 圖3.25 晶片製程步驟及結構放大圖..............................88 圖3.26 銀鏡加熱器之前濃縮晶片所注射之混合物層析圖在有無碳膜下之比較........................................................89 表 目 錄 表1.1 採樣法之優缺點比較....................................3 表1.2 美國環保署所公告五種方法之比較..........................4 表1.3 吸附劑之物理吸附和化學吸附比較.........................11 表1.4 IUPAC定義之孔徑等級和尺寸............................12 表1.5 常見熱電偶的材料與操作溫度............................25 表2.1 欲試材料之化學結構...................................56 表2.2 多種有機揮發氣體之結構與沸點..........................58 表3.1 自製碳膜纖維素與市售吸附劑比表面積比較..................64 表3.2 苯與甲苯於saran碳膜上之殘留率.........................80 表3.3 100μL重複採樣200ppb toluene 之面積及標準偏差..........82 表3.4 10種揮發性氣體經濃縮脫附後之訊號半高寬................85

    Arnell, J. C., H. L. McDermott, “Proceedings of the Second International Congress on Surface Activity ”, II, Butterworths, London, 1957, 2, 113.
    Casalnuovo, S. A., G. C. Frye-Mason, R. J. Kottenstette, E. J. Heller, C. M. Matzke, P. R. Lewis, IEEE Int. Proc. 1999 Joint Meeting, on France, 1999, 991.
    Dollimore, D., Langmuir, 1987, 3, 708.
    Ertl, G., H. Knözinger, J. Weitkamp, Handbook of Heterogeneous Catalysis, VCH D-69451 Weinheim, 1997, 3, 1508.
    Foley, H. C., Microporous Materials, 1995, 4, 407.
    Herr, A. E., A. K. Singh, Anal. Chem., 2005, 77, 586.
    Herr, A. E., D. J. Throckmorton, A. A. Davenport , A. K. Singh, Anal. Chem., 2005, 77, 585.
    Hussain, C. M., C. Saridara, S. Mitra, Analyst, 2008, 133, 1076.
    Inagaki, M., Pores in carbon materials-Importance of their control, 2009, 24.
    Jonas, L. A., T. Hall, P. Breysse, M. Corn, Environmental Sciences, 1988, 49, 461.
    Lambertus, G. R., R. Sacks, Anal. Chem., 2005, 77, 2078.
    Lewis, P. R., R. P. Manginell, D. R. Adkins, R. J. Kottenstette, D. R. Wheeler, S. S. Sokolowski, D. E. Trudell, J. E. Byrnes, M. Okandan, M. J. Bauer, R. G. Manley, Frye-Mason, IEEE Sens. J., 2006, 6, 784.
    Li, Y., Y. Chen, R. Xiang, D. Ciuparu, L. D. Pfefferle, C. Horv’ath, J. A. Wilkins, Anal. Chem., 2005, 77, 1398.
    Lu, C. J., E. T. Zellers, Anal. Chem., 2001, 73, 3449.
    Lu, C. J., E. T. Zellers, Analyst, 2002, 127, 1061.
    Lu, C. J., J. Whiting, R. D. Sacks, E. T. Zellers, Anal. Chem., 2003, 75, 1400.
    Martin, M., M. Crain, K. Walsh, E. Houser, J. Stepnowski, H. D. Wu, S. Ross, Sens. Actuators B, 2007, 126, 447.
    Martin, M., M. Crain, K. Walsh, R. A. McGill, E. J. Houser, D. Mott, J. Stepnowski, D. J. Nagel, I. Voiculescu, Solid-State Sensor, Actuator and Microsystems Workshop, Hilton Head Island, SC, USA, 2004, 390.
    Patrick, J. W., Porosity in Carbons, 1st ed., Edward Arnold, 1995.
    Pijolat, C., M. Camara, J.-P. Viricelle, Sensors and Actuators B, 2007, 127, 179.
    Ras-Mallorquı´, M. R., R. M. Marce´-Recasens, Anal. Chem., 2009, 28, 3.
    Reid, C. R., I. P. O’koye, K. M. Thomas, Langmuir, 1998, 14, 2415.
    Reidy, S., G. Lambertus, J. Reece,R. Sacks, Anal. Chem., 2006, 78, 2623.
    Reidy, S., D. George, M. Agah,R. Sacks, Anal. Chem., 2007, 79, 2911.
    Sanchez, J. M., R. D. Sacks, Anal. Chem., 2006, 78.
    Song, S., A. K. Singh,B. J. Kirby, Anal. Chem., 2004, 76, 4589.
    Song, S., A. K. Singh, T. J. Shepodd, B. J. Kirby, Anal. Chem., 2004, 76, 2367.
    Tian, W. C., S. W. Pang, C. J. Lu, E. T. Zellers, J. Microelectromech. Syst., 2003, 12, 264.
    Tian, W. C., H. K. L. Chan, S. W. Pang, C. J. LIP, E. T. Zellers, 12th Int. Conf. Solid-State Sensors, Actuators and Microsystems, Transducers 03, Boston, MA, USA, 2003, 131.
    Tian, W. C., T. H , Wu, C. J. Lu, W. R. Chen, H. J. Sheen, J. Micromech. Microeng, 2012, 22. (accepted for publication)
    Valc’arcel, M., B. M. Simonet, S. C’ardenas, B. Su’arez, Anal. Bioanal. Chem., 2005, 382, 1783.
    Voiculescu, I. M., Zaghloul, N. Narasimhan, Trends Anal. Chem., 2008, 27, 327.
    Wise, D. K., F. Dorman, R. Sacks, Anal. Chem., 2004, 76, 2629.
    Wise, D. K., F. Dorman, R. Sacks, Anal. Chem., 2004, 76, 2629.
    Wheeler, A., A. J. J . Robell, Catalysis, 1969, 13, 299.
    Zhou, Q., Y. Ding, J. Xiao, J. Chromatographia, 2007, 65, 25.
    王明怡,晶片型前濃縮裝置於有機揮發性氣體之研究,天主教輔仁大學化學系,2010.
    王振興,氣-固多層吸附理論與層析之研究,國立台灣科技大學化學工程學系,2000.
    行政院環保署環境檢驗所,不銹鋼採樣筒/氣相層析質譜儀法,NIEAA715.11B,2000.
    吳志偉,微奈米工程技術封裝製程,國立臺灣海洋大學機械與機電工程學系,2005.
    徐志明,以三層模式模擬氧化鋁表面競爭吸附行為之研究,國立雲林科技大學環境與衛生安全工程系,2003.
    陳俊菁,應用紅外線攝溫影像術檢測磁磚黏貼完整性,朝陽科技大學,2004.
    黃昭銘,中孔洞分子篩 SBA-15 的製備,崑山科技大學環境工程系,2009.
    黃富昌,土壤結構及化性對有機污染物吸/脫附特性之研究,國立中央大學環境工程研究所,2004.
    黃盟欽,碳分子篩/氧化鋁複合膜之製備及特性之研究,國立成功大學化學工程研究所,2004.
    劉丙寅、游家瑋、蔡宏營、葉性銓、丁嘉仁,異質晶圓接合機制探討及發展現況,微奈米機械與系統技術專輯,2005, 269, 5.
    劉信旺、吳倍任、羅俊光,空氣中揮發性有機化合物分析方法,2004.
    戴明鳳、董俊良,熱電偶式與熱敏式電子溫度器,2009.

    下載圖示
    QR CODE