研究生: |
吳志偉 Jrwei Wu |
---|---|
論文名稱: |
無序性三維點資料之網格化曲面重建 Reconstruction of Polygonal Surface from Unorganized 3D Points |
指導教授: | 屠名正 |
學位類別: |
碩士 Master |
系所名稱: |
機電工程學系 Department of Mechatronic Engineering |
論文出版年: | 2006 |
畢業學年度: | 94 |
語文別: | 中文 |
論文頁數: | 58 |
中文關鍵詞: | 逆向工程 、三角網格曲面 、表面重建 、火龍尼圖 、狄龍尼三角網格 |
英文關鍵詞: | Reverse Engineering, Triangulated surface, Reconstruction of surface, Voronoi diagram, Delaunay diagram |
論文種類: | 學術論文 |
相關次數: | 點閱:267 下載:10 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
無序性三維點資料,意指僅具有三維座標而無其它額外資訊的點資料。本論文將依此僅有的條件來完成其網格曲面的重建。
為了使網格曲面能呈現模型原貌,則需要大量的點資料,這使得在計算上非常耗時且有較高的複雜度。本研究以區域性處理的方式來建構網格曲面,藉由鄰近點集合的建立,來增進建立網格的效率,並能維持點資料的區域性特徵。
網格建立後,並非全部是用來作為網格曲面,因為有多餘網格的存在。多餘網格會增加網格曲面的資料量、影嚮後續的處理以及網格曲面無法應用於製造上。本研究於重建的演算法中加入刪除多餘網格的準則來避免這個現象。
Unorganized three-dimensional points means that the points contain no additional information other than the three-dimensional coordinates. In this dissertation, the reconstruction of polygonal surface will be implemented with the only condition “three-dimensional coordinates.”
For presenting whole model with polygonal surface, it is needed to have a flock of points. The large quantity of points in computing cost much time and have higher complexity. In this research, a method is presented with regional process to reconstruct the polygonal surface. The efficiency of building polygons is improved and the local feature of point is reserved by building neighbor points set.
After building polygons, all the polygons are not used to form the polygonal surface because many unnecessary polygons exist. That will enlarge the data of polygonal surface, affect the follow-up processes and cause the polygonal surface not useful in manufacturing. In the research, the algorithm of reconstruction is added the rules to delete the unnecessary polygons.
[1] A. Okabe, B. Boots and K. Sugihara, “Spatial Tessellations Concepts
and Applications of Voronoi Diagrams,” JOHN WILEY & SONS, 1992.
[2] 周培德,計算幾何-算法分析與設計,清華大學出版社,1999。
[3] J.O’ Rourke, “Computational Geometry in C,” Cambridge, 2nded. Chap. 3, pp. 64-91.
[4] M. Berg, M. Kreveld, M. Overmars and O. Schwarzkopf, “Computational Germerty Algorithms and Applications,” Springer, 1997.
[5] B. Barber, D. P. Dobkin and H. Huhdanpaa, “The Quickhull Algorithm for Convex Hulls,” ACM Trans. Math. Softw, Volume 22, Issue 4, pages 469-483, 1996.
[6] Amenta, N, Bern, M, and Kamvysselis, M., “A new Voronoi-based surface
reconstruction algorithm,” SIGGRAPH ’98, pp. 415-421, 1998.
[7] Amenta, N. and Bern M., “Surface reconstruction by Voronoi filtering,”
Discrete and Computational Geometry, Vol. 22, pp. 481-504, 1999.
[8] T. P. Fang and L. A. Piegl, “Delaunay Triangulation in Three Dimensions,” IEEE Computer Graphics and Applications, Volume 15, Issue 5, pages 62–69, 1995.
[9] T. P. Fang and L. A. Piegl, “Delaunay Triangulation Using a Uniform
Grid,” IEEE Computer Graphics and Applications, Volume 13, Issue 3, pages 36–47, 1993.
[10] N.Ameta, S. Choi and R. K. Kolluri, “The Power Crust,” Porceedings sixth ACM Symposium on Solid modeling and applications, pages 241-266, 2001.
[11] David, c.-S.,”A greedy Delaunay based surface reconstruction algorithm,” Research report, INRIA, 2002.
[12] Mencl, E. and Muller, H., “Graph-based surface reconstruction using structures in scattered point set,” Proceedings of CGI’98 (Computer Graphics International), pp. 298-311, 1998.
[13] Bernardini, F., Mittleman, J., Rushmeier, H., Silva, C., and Taubin, G., “The ball-pivoting algorithm for surface reconstruction,” IEEE Transactions on Visualization and Computer Graphics, Vol. 5, No. 4, pp.349-359,1999.
[15] http://www.cgal.org/
[16] Edelsbrunner, and H., Guoy, D.,”An experimental study of sliver exudation,” Engin. With Computers, Vol. 18 pp. 229-240, 2002.
[17] Aurenhammer, F., “Voronoi diagrams - a survey of a fundamental
geometric data structure,” ACM Computing Surveys, Vol. 23, No. 3, pp.
345-405, 1991.
[18] Berg, M.D., Kreveld, M.V., Overmars, M., and Schwarzkopf, O.,
“Computational Geometry, Algorithms and Applications,” Springer-Verlag,
1997.
[19] N. Amenta and M. Bern, “Surface Reconstruction by Voronoi Filtering, ” Proceedings of the fourteenth annual ACM symposium on Computational geometry, pages 39-48, 1998.
[20] Amenta, N., Bern, M., and Eppstein, D., “The crust and the beta-skeleton:combinatorial curve reconstruction,” Graphical Models and ImageProcessing, Vol. 60/2, No. 2, pp. 125-135, 1998.
[21] C. L. Bajaj, F. Bernardini and G. Xu, “Reconstructing Surfaces and Functions on Surfaces from Unorganized Three-Dimensional Data,” Springer Algorithmic, Volume 019, Issue 1, pages 243-261, 1997.
[22]葉志雄碩士論文,“無順序性點資料網格化及應用”,國立中正大學 機械工程研究所,2001。
[23]郭川竹博士論文,“創新之組合方法於散點資料的模型重建與應用”,國立中正大學 機械工程學系,2004。