Basic Search / Detailed Display

Author: 陳偉昕
Thesis Title: 心音圖壓縮與辨認系統設計
Phonocardiogram Data Compression and Analysis System Design
Advisor: 高文忠
Kao, Wen-Chung
黃奇武
Huang, Chi-Wu
Degree: 碩士
Master
Department: 工業教育學系
Department of Industrial Education
Thesis Publication Year: 2006
Academic Year: 94
Language: 中文
Keywords (in Chinese): 居家照護系統心音圖心電圖小波轉換支持向量機
Keywords (in English): homecare system, phonocardiogram, electrocardiogram, wavelet transform, support vector machine
Thesis Type: Academic thesis/ dissertation
Reference times: Clicks: 219Downloads: 10
Share:
School Collection Retrieve National Library Collection Retrieve Error Report
  • 一個理想的居家照護系統應該建立在一個可攜式的平台上,能夠在此平台上處理各種的生醫訊號,並且可以提供即時的影音處理。在本論文中,我們使用了一個消費型的數位相機,並在此相機上作生醫訊號的即時處理。而且,我們利用相機執行正常功能(例如作JPEG檔案的壓縮,或是MPEG-1/MPEG-4錄影功能)的時候,可以同時進行心音圖的壓縮與辨認計算。
    我們將心音圖之壓縮辨認演算法實現在嵌入式軟體平台中,這個平台建構在一個數位相機上。以小波轉換為基礎的心音圖壓縮演算法不但可以做到壓縮檔案的效果並且可以降低不必要的雜訊。以支持向量機為基礎之心音圖辨認演算法可以成功的將九種心音辨認出來。
    我們所使用的心音圖資料庫包含42個心音圖測試資料,測試資料可以分為訓練組及測試組,而可以達到每次處理1.85秒的心音訊號僅需花0.16秒的時間,在這個速度之下足夠提供即時的系統運算,而且可以達到100%的辨識率。

    An ideal homecare system needs to process multiple diagnostic signals using a portable battery-driven device and provide a real time audio/video interface for telemedicine applications. In this thesis, we present a low cost real-time homecare system based on a commercial digital camera platform. In addition to the typical multimedia recording functions of a digital camera, such as JPEG and MPEG-1/MPEG-4 recording, the proposed system can further process and compress phonocardiogram (PCG) signal concurrently.
    We include the PCG signal compression and analysis function into a robust embedded software platform for digital camera systems. The proposed wavelet transform-based PCG compression algorithm efficiently reduces the undesired noises as well as signal data size. The PCG analysis algorithm based on support vector machines successfully identify nine types of heart disease.
    To demonstrate the performance of the proposed system, we have tested with the PCG database which includes 42 samples of PCG signals. The samples are partitioned into two sets for training and test purposes. The average processing for 1.85 seconds of PCG signal time on the camera is 0.16 seconds, which is faster enough for the real time applications. The MPEG-4 video can be recorded simultaneously in the DSP subsystem and the recognition rate is 100%.

    圖目錄 5 表目錄 7 第一章 緒論 8 1.1研究動機 8 1.2相關研究 10 1.3問題描述 17 1.4所提出的方法 18 1.5論文架構 20 第二章 系統架構 21 2.1硬體平台 22 2.2軟體平台 24 第三章 心音圖壓縮 28 3.1 心臟構造簡介 28 3.2 小波轉換簡介 34 3.3 相關研究介紹 38 3.4 心音圖壓縮演算法 40 3.5 壓縮實驗結果 42 第四章 心音圖診斷 45 4.1心音圖的種類 45 4.2支持向量機簡介 53 4.3相關研究 59 4.4心音訊號診斷演算法 61 4.5實驗結果 69 第五章 實驗結果 71 5.1心音圖之壓縮結果 71 5.2心音圖之辨識結果 77 第六章 結論與未來展望 80 6.1結論 80 6.2未來展望 80 參考文獻 82 作者自傳 86 著作 87

    [1] S. Barro, J. Presedo, D. Castro, M. Fernandez-Delgado, S. Fraga, et al, “Intelligent telemonitoring of critical-care patients,” IEEE Engineering in Medicine and Biology, pp. 80-88, July/Aug. 1999.
    [2] C. S. Pattichis, E. Kyriacou, S. Voskarides, M. S. Pattichis, R. Istepanian, and C. N. Schiza, “Wireless Telemedicine Systems: An Overview,” IEEE Antenna’s and Propagation Magazine, vol. 44, no. 2, pp. 143-153, April, 2002.
    [3] K. Hung and Y. T. Zhang, “Implementation of a WAP-Based Telemedicine System for Patient Monitoring,” IEEE Trans. Information Technology in Biomedicine, vol. 7, no. 2, pp. 101-107, June, 2003.
    [4] G.. Williams, K. Doughty, and D. A. Bradley, “A System Approach to Achieving CareNet-An Integrated and Intelligent Telecare System,” IEEE Trans. Information Technology in Biomedicine, vol.2, no.1, pp. 1-8, Mar. 1998.
    [5] J. Bai, Y. Zhang, D. Shen, L. Wen, C. Ding, et al., “A Portable ECG and Blood Pressure Telemonitoring System,” IEEE Engineering in Medicine and Biology Magazine, vol. 18, no. 4, pp. 63-70, July-Aug., 1999.
    [6] W. W. Myint and B. Dillard, “An electronic stethoscope with diagnosis capability,” in Proc. IEEE Southeastern Symp. System Theory, pp. 133-137, Mar. 2001.
    [7] O. Abdel-Alim, N. Hamdy and M. A. El-Hanjouri, “Heart diseases diagnosis using heart sounds,” in Proc. IEEE National Radio Science Conference, pp. 634-640, Mar. 2002.
    [8] X. Zhang, L. G. Durand, L. Senhadji, H. C. Lee, and J. L. Coatrieux, “Analysis-synthesis of the phonocardiogram based on the matching pursuit method,” IEEE Trans. Biomedical Engineering, vol. 45, no. 8, pp. 962–971, Aug, 1998.
    [9] X. Zhang, L-G Durand, L. Senhadji, H. C. Lee, and J. L. Coatrieux, “Timefrequency scaling transformation of the phonocardiogram based of the matching pursuit method,” IEEE Trans. Biomedical Engineering, vol. 45, no. 8, pp. 972-979, Aug. 1998.
    [10] S. G. Miaou, H. L. Yen, and C. L. Lin, “Wavelet-based ECG compression using dynamic vector quantization with tree code vectors in single codebook,” IEEE Trans. Biomedical Engineering, pp. 233-239, vol. 49, no. 7, July 2002.
    [11] J. Martinez-Alajarin and R. Ruiz-Merino, “Wavelet and wavelet packet compression of phonocardiograms,” Electronics Letters, vol. 40, no. 17, pp. 1040-1041, Aug. 2004.
    [12] H. Laing and I. Hartimo, “A Heart Sound Feature Extraction Algorithm Based on Wavelet Decomposition and Reconstruction,” in Proc. of the 20th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, vol.20, no.3, pp.1539-1542, 1998.
    [13] M. Antonini, M. Barlaud, P. Mathieu, and I. Daubechies, “Image coding using wavelet transform,” IEEE Trans. Image Processing, vol. 1, pp. 205-220, Apr. 1992.
    [14] S. G. Mallat, “A theory for multiresolution signal decomposition: The wavelet representation,” IEEE Trans. Pattern Anal. Machine Intell., vol. 11, no. 7, pp. 674-693, July 1989.
    [15] W. C. Kao, T. H. Sun, and S. Y. Lin, “A robust embedded software platform for versatile camera systems,” in Proc. IEEE International Symp. Circuits and Systems, pp. 5015-5018, Japan, Jun. 2005.
    [16] S. R. Messer, J. Agzarian, and D. Abbott, “Optimal wavelet denosing for phonocardiograms,” Microelectronics Journal, vol. 32, pp. 931-941, 2001.
    [17] TMS320DM310 Digital Media DSP Technical Reference Manual, Version 2.0, Texas Instruments, 2003.
    [18] B. A. Rajoub, “An efficient coding algorithm for the compression of ECG signals using the wavelet transform,” IEEE Trans. Biomedical Engineering, vol. 49 , pp 355-362, Apr. 2002.
    [19] Y. Zigel, A. Cohen, and A. Katz, “The weighted diagnostic distortion (WDD) measure for ECG signal compression,” IEEE Tran. Biomedical Engineering, vol. 47, no. 11, pp. 1422-1430, Nov. 2000.
    [20] T. R. Reed, N. E. Reed, and P. Fritzson, “Heart sound analysis for symptom detection and computer-aided diagnosis,” Simulation Modeling Practice and Theory, vol. 12, pp. 129-146, 2004.
    [21] Z. Sharif, S. Daliman, A. Z. Shaameri, and S. H. S. Salleh, “An expert system approach for classification of heart sounds and murmurs,” 6th International Symp. Signal Processing and its Applications, vol.2, pp.739-740, Aug. 2001.
    [22] Z. M. Zin, S. H. S. Salleh, and A. Z. Shaameri, “The design of heart classification system,” 6th International Symp. Signal Processing and its Applications, vol.2, pp.741-742, Aug. 2001.
    [23] H. F. Lu, H. W. Tzeng, M. C. Chen, and J. L. Chen, “Design a residential gateway for tele-homecare systems,” in Proc. 9th IEEE International Symp. Consumer Electroncis, pp. 291-295, 2005.
    [24] O. Say, Z. Dokur, and T. Olmez, “Classification of heart sounds by using wavelet transform,” in Proc. of the Second Joint EMBS Conference, vol.1, pp.128-129, Oct. 2002.
    [25] H. M. Mgdob, J. N. Torry, R. Vincent, and B. A. Naami, “Application of Morlet Transform Wavelet in the Detection of Paradoxical Splitting of the Second Heart Sound,” Computers in Cardiology, pp.323-326, Sep, 2003.
    [26] C. J. Lin, “A Formal Analysis of Stopping Criteria of Decomposition Methods for Support Vector Machines,” IEEE Trans. Neural Network, vol.13, no.5, pp.1045-1052, Sep. 2002.
    [27] C. J. Lin, “On the Convergence of the Decomposition Method for Support Vector Machines,” IEEE Trans. Neural Network, vol.12, no.6, pp. 1288-1298, Nov. 2001.
    [28] I. Turkoglu and A. Arslan, “An intelligent pattern recognition system based on neural network and wavelet decomposition for interpretation of heart sounds,” in Proc. 23rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society, vol.2, pp.1747-1750, Oct. 2001.
    [29] I. Hossain and Z. Moussavi, “An Overview of Heart-Noise Reduction of Lung Sound Using Wavelet Transform Based Filter,” in Proc. 25th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, vol.1, pp.458-461, Sep. 2003.
    [30] S. Omran and M. Tayel, “A Heart Sound Segmentation and Feature Extraction Algorithm using Wavelets,” First International Symp. Control, Communication and Signal Processing, pp.235-238, 2004.
    [31] Z. M. Zin, S. H. Salleh, S. Daliman, and M. D. Sulaiman, “Analysis of Heart Sounds Based on Continuous Wavelet Transform,” in Proc. Student Conference on Research and Development, pp.19-22, Aug. 2003.
    [32] T. Oskiper and R. Watrous, “Detection of the First Heart Sound using a Time-delay Neural Network,” Computers in Cardiology, pp.537-540, Sep. 2002.
    [33] D. Anguita, A. Boni, and S. Ridella, “A Digital Architecture for Support Vector Machines: Theory, Algorithm, and FPGA Implementation,” IEEE Trans. Neural Networks, vol. 14, no. 5, pp.993-1009, Sep, 2003.
    [34] L. Shoker, S. Sanei, and J. Chambers, “Artifact Removal From Electroencephalogram Using a Hybrid BSS-SVM Algorithm,” IEEE Signal Processing Letters, vol. 12, no. 10, pp. 721-724, Oct. 2005.
    [35] R. Genov and G. Cauwenberghs, “Kerneltron: Support Vector “Machine” in Silicon,” IEEE Trans. Neural Networks, vol. 14, no. 5, pp. 1426-1434, Sep. 2003.
    [36] S. Osowski, L. T. Haoi, and Markiewicz, “Support Vector Machine-Based Expert System for Reliable Heartbeat Recognition,” IEEE Trans. Biomedical Engineering, vol. 51, no. 4, pp. 582-589, Apr. 2004.
    [37] Wen-Chung Kao, Shou-Hung Chen, Tai-Hua Sun, Tai-Yi Chiang, and Sheng-Yuan Lin, “An Integrated Software Architecture for Real-Time Video and Audio Recording Systems,” IEEE Trans. Consumer Electronics, vol. 51, no. 3, pp. 879-884, Aug. 2005.
    [38] Wen-Chung Kao, Chih-Chung Kao, Shou-Hung Chen, Yen-Wei Hung. “The embedded software architecture for real-time video and audio recording,” in Proc. CVGIP 05, pp. 1462-1467, 2005, Taiwan, ROC.
    [39] Wen-Chung Kao, Wei-Hsin Chen, Chun-Kuo Yu, Chin-Ming Hong, and Sheng-Yuan Lin, “Portable real-time homecare system design with digital camera platform,” IEEE Trans. Consumer Electronics, vol. 51, no. 4, pp. 1035-1041, Nov. 2005.
    [40] Wen-Chung Kao, Wei-Hsin Chen, Chun-Kuo Yu, and Sheng-Yuan Lin, “A real-time system for portable homecare applications,” in Proc. IEEE International Sym. Consumer Electronics (ISCE), pp. 369-374, Jun, 2005, Macau, 2005.
    [41] Wen-Chung Kao, Wei-Hsin Chen, Shou-Hung Chen, and Chih-Hsiang Huang, “Real-Time Phonocardiogram Signal Analysis For Portable Homecare System,” 2005 CACS Automatic Control Conference, Taiwan, Nov. 2005.
    [42] Wen-Chung Kao, Chung-Kuo Yu, Wei-Hsin Chen, Chia-Ping Shen, and Yen-Wei Hung, “Automatic Electrocardiogram Recognition by Wavelet Transform and Support Vector Machine,” 2005 CACS Automatic Control Conference, Taiwan, Nov. 2005.
    [43] Phonocardiogram database available at http://www.qdheart.com/cgz/jcxt/tyvf/tyvf1.htm.
    [44] M. S. Thaler原著, 呂嘉陞編譯, ”心電圖學必備”第三版, 合記圖書出版社, 2002.
    [45] R. C. Gonzalez and R. E. Woods, Digital Image Processing, 2nd Edition, Prentice Hall, USR, N.J. 2002.
    [46] B. Parhami, Computer Arithmetic, Oxford university press N.Y. 2000.

    QR CODE