簡易檢索 / 詳目顯示

研究生: 張景翔
Zhang, Jing-Xiang
論文名稱: 基於多目標模型預測控制應用於自主駕駛小型巴士之路徑追踪控制設計
Path Tracking Control for an Autonomous Shuttle Based on Multi-Objective Model Predictive Control
指導教授: 蔣欣翰
Chiang, Hsin-Han
王偉彥
Wang, Wei-Yen
學位類別: 碩士
Master
系所名稱: 電機工程學系
Department of Electrical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 84
中文關鍵詞: 車輛動態路徑追蹤預視控制模型預測控制人類縱向駕駛模型自動駕駛
英文關鍵詞: Vehicle Dynamics, Path Tracking, Preview Control, Model Predictive Control, Longitudinal Human Driving Model, Automated Driving
DOI URL: http://doi.org/10.6345/NTNU201900905
論文種類: 學術論文
相關次數: 點閱:77下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要提出一種多目標模型預測控制器(MOMPC),應用於自主駕駛小型巴士的車輛最佳路徑規劃。多目標模型預測控制器是基於傳統的預測控制器改良而成,在規劃車輛路徑時並加入考慮自主駕駛小型巴士行徑過程中所產生的內側車輪行進軌跡與側向加速度進行規劃,此外並加入仿人類駕駛之Gipps縱向駕駛模型,可根據前方車輛進行加速度的調整,以確保自駕車安全的行駛速度與保持安全跟車距離。最後將所規劃好的車輛行駛最佳路徑,建置於車輛動態模擬軟體CarSim的虛擬環境中,並透過預視控制(Preview control)進行車輛最佳行徑路線追蹤控制,進而在虛擬環境中驗證與探討多目標模型預測控制器(MOMPC)應用於自主駕駛小型巴士路徑追踪控制的表現。

    In this thesis, a design of multi-objective model predictive control (MOMPC) is proposed for optimal path-planning of an autonomous shuttle. As the improvement of traditional MPC method, the difference of radius between inner wheels and the lateral acceleration are more considered into the proposed MOMPC such that the optimal and safety oriented trajectory can be constructed for an autonomous shuttle traveling on curvature roads. Moreover, the speed-acceleration profile based on the Gipp’s car-following model is integrated into the MOMPC, and then a safe speed and distance can be maintained indefinitely during automated driving. The algorithm of MOMPC is implemented in the CarSim simulator software suite, and coordinated with the preview steering control algorithm to carry out the path tracking while confronting with the future road curvatures. The simulation results through the VR animation are presented to demonstrate the improved performance of MOMPC in path tracking of an autonomous shuttle compared to the MPC.

    摘  要 i 誌  謝 iii 目  錄 iv 圖 目 錄 vi 表 目 錄 x 第一章 緒論 1 1.1. 研究動機與背景 1 1.2. 自主駕駛車輛技術發展現況 4 1.3. 自主駕駛車輛軌跡追蹤研究現況 10 1.4. 自主駕駛車輛分級 13 1.5. 論文架構 14 第二章 車輛模型建立 15 2.1. 運動學模型 15 2.2. 動力學模型 20 第三章 多目標模型預測控制決策之設計 29 3.1. 多目標模型預測控制(MOMPC) 29 3.2. 多目標模型預測控制(MOMPC)加入人類駕駛行為 46 第四章 自主駕駛控制 48 4.1. CarSim模擬軟體介紹 48 4.2. 預視控制(Preview Control) 49 第五章 實驗結果 51 5.1. 虛擬車輛與場景的建置 51 5.2. MOMPC考慮內側車輪行駛軌跡之路徑追蹤 53 5.3. MOMPC考慮車輛側向加速度之路徑追蹤 60 5.4. MOMPC考慮內側車輪行駛軌跡與人類行為之路徑追蹤 66 5.5. MOMPC考慮車輛側向加速度與人類行為之路徑追蹤 73 第六章 結論與未來展望 81 6.1. 結論 81 6.2. 未來展望 81 參考文獻 82

    [1] J. Guldner, H.S. Tan and S. Patwardhan, “Analysis of Automatic Steering Control for Highway Vehicles with Lookdown Lateral Reference Systems,” Vehicle System Dynamics, vol. 26, no. 4, pp. 243-269, Oct. 1996.
    [2] R. Shanker, et al., “Autonomous Cars: Self-Driving the New Auto Industry Paradigm,” Morgan Stanley, Nov. 2013.
    [3] T. Triplett, R. Santos, S. Rosenbloom and B. Tefft, “American Driving Survey: 2014 – 2015,” AAA Foundation for Traffic Safety, Sep. 2016, pp. 9-14.
    [4] J. Lee and B. Park, “Development and Evaluation of a Cooperative Vehicle Intersection Control Algorithm Under the Connected Vehicles Environment,” IEEE Transactions on Intelligent Transportation Systems, vol. 13, no. 1, pp. 81-90, Jan. 2012.
    [5] M. Barth and K. Boriboonsomsin, “Real-World CO2 Impacts of Traffic Congestion,” University of California Transportation, Center University of California, Mar. 2008.
    [6] 李愛娟, “智能車輛運動軌跡規劃方法的研究,”南京航空航太大學能源與動力學院博士論文, 2013.
    [7] K. Anthony, “USA-ITS Deployment Experiences & Lessons Learned,”14th Word Congress on ITS, Beijing, 2007
    [8] G. Arslan, J. Marden and J. Shamma, “Autonomous Vehicle-Target Assignment: A Game-Theoretical Formulation,” Journal of Dynamic Systems, vol. 129, no. 5, pp. 584-596, Sep.2007.
    [9] H.U. Kaeser, “The Future Combat System – What Future Can the Army Afford?,” US Army Future Combat Systems, Feb. 2009
    [10] C. Thorpe, et al., “Smart Cars: The CMU Navlab,” in Proc. of WORLD Med93, Oct. 1993.
    [11] C.M. Shoemaker and J.A. Bornstein, “Overview of the Demo III UGV program,” in Proc. SPIE Conf. on Robotic and Semi-Robotic Ground Vehicle Technology, Orlando, FL, Aug. 1998, pp. 202-211.
    [12] Carnegie Mellon大學的沙漠風暴: https://www.sciencenewsforstudents.org/article/robots-rocky-road
    [13] Stanford大學的Stanley: http://www.nbcnews.com/id/9621761/ns/technology_and_science-innovation
    [14] S. Thrun, et al., “Stanley: The Robot that Won the DARPA Grand Challenge,” Journal of Field Robotics, vol.23, no. 9, pp. 661-692, Jan.2006.
    [15] Carnegie Mellon大學的BOSS: https://www.ri.cmu.edu/robot/boss
    [16] Waymo所推出的自駕車: https://waymo.com
    [17] Tesla公司的Model 3: https://www.tesla.com/zh_TW/model3
    [18] S. Shladover, C. Desoer, J. Hedrick, M. Tomizuka, J. Walrand, W. Zhang, D. McMahon, H. Peng, S. Sheikholeslam and N. McKeown, “Automated Vehicle Control Developments in the PATH Program,” IEEE Transactions on Vehicular Technology, vol. 40, no. 1, pp. 114-130, Feb. 1991.
    [19] G. Brusaglino, "Safe and Effective Mobility in Europe-the Contribution of the PROMETHEUS Programme," in Proc. IEE Colloquium on Prometheus and Drive, London, UK, Oct. 1992, pp. 1/1-11.
    [20] 慕尼黑大學的VaMP :https://www.singularityweblog.com/exponential-technology-self-driving-car%E2%80%8F/
    [21] M. Bertozzi, A. Broggi and A. Fascioli, “Vision-Based Intelligent Vehicles: State of the Art and Perspectives,” Robotics and Autonomous Systems, vol. 32, no. 1, PP.1-16, Oct. 1999.
    [22] M. Bertozzi, L. Bombini, A. Broggi, M. Buzzoni, E. Cardarelli, S. Cattani, P. Cerri, S. Debattisti, . R.I. Fedriga, M. Felisa, L. Gatti, A. Giacomazzo, P. Grisleri, M.C. Laghi, L. Mazzei, P. Medici, M. Panciroli, P.P. Porta and P. Zani, “The VisLab Intercontinental Autonomous Challenge: T 3,000 km, 3 Months, no Driver,” in proc. 17th World Ccongress on ITS, Busan, South Korea, Oct. 2010.
    [23] 德國自由大學的MIG :https://www.dw.com/en/german-autonomous-car-takes-its-first-spin-in-berlin/a-6113648
    [24] 牛津大學研製的Wildcat :http://www.ox.ac.uk/news/2011-10-10-robot-car-cut-jams-prangs-0
    [25] 牛津大學研製的RobotCar :https://ori.ox.ac.uk/application/robotcar
    [26] 由智恒,“基於MPC演算法的無人駕駛車輛軌跡跟蹤控制研究,” 吉林大學汽車工程學院碩士論文, 2018年5月.
    [27] 陳煥明,郭孔輝, “基於航向角和位置偏差控制的駕駛員模型,” 農業機械學報, vol. 44, no. 10, pp. 36–40, 2013年10月.
    [28] 高振海, 管欣, 郭孔輝, “駕駛員方向控制模型及在汽車智慧駕駛研究中的應用,” 中國公路學報, vol. 13, no. 3, pp. 106-109, 2000年7月.
    [29] 王仲民, “移動機器人路徑規劃及軌跡跟蹤問題研究,” 河北工業大學機械工程學院博士論文, 2006年.
    [30] K.J. Ǻström, and T. Hägglund, PID Controllers: Theory, Design and Tuning. ISA, 1995.
    [31] C. Urmson, et al., “A Robust Approach to High‐Speed Navigation for Unrehearsed Desert Terrain,” Journal of Field Robotics, vol. 23, no. 8, pp. 467-508, Aug. 2006.
    [32] S. Thrun, et al., “Stanley: The Robot that Won the DARPA Grand Challenge,” Journal of Field Robotics, vol. 23, no. 9, pp. 661-692, Apr. 2006.
    [33] J. Ziegler, et al., “Making Bertha Drive—An Autonomous Journey on a Historic Route,” IEEE Intelligent Transportation Systems Magazine, vol. 6, no. 2, pp. 8-22, Apr. 2014.
    [34] J. Levinson, et al., “Towards Fully Autonomous Driving: Systems and Algorithms,” in Proc. IEEE Intelligent Vehicles Symposium, Baden-Baden, Germany, Jul. 2011, pp. 163-168.
    [35] K. Kritayakirana and J.C. Gerdes, “Using the Centre of Percussion to Design a Steering Controller for an Autonomous Race Car,” Vehicle System Dynamic, vol. 50, pp. 33-51, Jul. 2012.
    [36] 丁海濤, 郭孔輝, 陳虹, “汽車穩定性控制中橫擺力矩決策的LQR方法,” 吉林大學學報(工), vol. 40, no. 3, pp. 597-601, 2010年5月.
    [37] 龔建偉, 姜岩, 徐威, 無人駕駛車輛模型預測控制. 北京理工大學出版社, 2014.
    [38] F. Borrelli, et al., “MPC-Based Approach to Active Steering for Autonomous Vehicle Aystems,” International Journal of Vehicle Autonomous Systems., vol. 3, no. 2, pp. 265-291, Jan. 2005.
    [39] P. Falcone, et al., “Predictive Active Steering Control for Autonomous Vehicle Systems,” IEEE Transactions on Control Systems Technology, vol. 15, no. 3, pp. 566 – 580, May. 2007.
    [40] T. Keviczky, et al., “Predictive Control Approach to Autonomous Vehicle Steering,” in Proc. American Control Conference, MN, USA, Jun. 2006, pp. 4670-4675.
    [41] P. Song, C. Zong and M. Tomizuka, “Combined Longitudinal and Lateral Control for Automated Lane Guidance of Full Drive-By-Wire Vehicles,” SAE International Journal of Passenger Cars-Electronic and Electrical Systems, vol. 8, no. 2, pp. 419-424, Apr. 2015.
    [42] Y. Gao, et al., “Predictive Control of Autonomous Ground Vehicles With Obstacle Avoidance on Slippery Roads,” in proc ASME 2010 Dynamic Systems and Control Conference, vol. 1, no.10, pp. 265-272, Jan. 2010.
    [43] Y. Gao, “Model Predictive Control for Autonomous and Semiautonomous Vehicles,” University of California, Berkeley, 2014.
    [44] S. O.-R. A. V. S. Committee et al., “Taxonomy and Definitions for Terms Related to Driving Automation Systems for On-Road Motor Vehicles,” SAE International, Sep. 2014.
    [45] J. Kong, M. Pfeiffer, G. Schildbach and F. Borrelli, “Kinematic and Dynamic Vehicle Models for Autonomous Driving Control Design,” in proc 2015 IEEE Intelligent Vehicles Symposium (IV), Seoul, South Korea, Jul. 2015, pp. 1094-1099.
    [46] R. Rajesh, Vehicle Dynamics and Control. US: Springer, 2012.
    [47] F. Curinga, “Autonomous Racing Using Model Predictive Control,” Stockholm, Jan. 2018.
    [48] A. Liniger, A. Domahidi and M. Morari, “Optimization-Based Autonomous Racing of 1:43 Scale RC Cars”, Optimal Control Applications and Methods, vol. 36, no. 5, pp. 628-647, Sep./Oct. 2014.
    [49] H. B. Pacejka, R. S. Sharp, “Shear Force Development by Pneumatic Tires in Steady State Conditions: A Review of Modeling Aspects”, Vehicle System Dynamics, vol. 20, no. 3–4, pp. 121-176, Jan. 1991.
    [50] Z. Bareket, P. Fancher, H. Peng, K. Lee and C.A Assaf, “Methodology for Assessing Adaptive Cruise Control Behavior,” IEEE Transactions on Intelligent Transportation Systems, vol. 4, no.3, pp, 123-131, Sep. 2003.
    [51] P.G. Gipps, “A Behavioural Car-Following Model for Computer Simulation,” Transportation Research Part B Methodological, vol.15, no.2, pp.105-111, Feb. 1980.

    下載圖示
    QR CODE