簡易檢索 / 詳目顯示

研究生: 范雅雯
Ya-Wen Fan
論文名稱: 探討薑黃素結合臨床抗癌藥物在人類膀胱癌細胞中之效果及機轉
The effect and molecular action of curcumin in FDA-approved clinical drug-treated human bladder cancer cells
指導教授: 蘇純立
Su, Chun-Li
學位類別: 碩士
Master
系所名稱: 人類發展與家庭學系
Department of Human Development and Family Studies
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 104
中文關鍵詞: 人類膀胱癌細胞薑黃素極光激酶細胞凋亡細胞自噬FDA核准臨床用藥
英文關鍵詞: Human bladder cancer cell, Curcumin, Aurora A, Apoptosis, Autophagy, FDA-approved anti-cancer drugs
論文種類: 學術論文
相關次數: 點閱:325下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 膀胱癌是泌尿系統中最常見的腫瘤疾病,可能與環境中砷暴露量較高而導致Aurora A過度表現有關。膀胱癌中發現Aurora A及表皮生長因子(EGF)有過度活化的情形,跟細胞增生有關。FDA核准的臨床藥物以Gemcitabine搭配Cisplatin/Carboplatin是目前傾向使用的化療藥物。希望將臨床藥物搭配薑黃素,藉由抑制Aurora A基因及相關蛋白表現,延緩癌細胞生長。以MTT assay決定各臨床藥物作用在膀胱癌T24細胞的濃度為0.05~0.1 μM Gemcitabine加0.5 μM Cisplatin/ 5 μM Carboplatin。結合薑黃素15 μM計算出CI值皆呈現協同作用。以流式細胞儀分析細胞週期,臨床用藥結合薑黃素增加代表細胞凋亡比例sub-G1 phase,增加代表可能跟抑制Aurora A相關G2/M phase停滯的比例,而且同時會引起細胞自噬作用。以西方墨點法發現薑黃素合併使用臨床藥物,抑制phospho-Aurora A、p62、Beclin-1、phospho-PI3K、phospho-p70s6k、Atg12-Atg5等蛋白表現,增加LC3-II、phospho-mTOR、phospho-AKT、phospho-MEK、phospho-ERK等蛋白表現。綜合以上結果,薑黃素合併臨床用藥能增加膀胱癌T24細胞毒殺效果及增加sub-G1期凋亡比例,增加化療敏感性,且抑制T24細胞Aurora A的活性,經由活化MEK/ERK路徑而促進自噬作用。

    Bladder cancer is the ninth most common cancer worldwide and the fourteenth most diagnosed malignancy in Taiwan (2013). Gemcitabine plus cisplatin (GC) treatment is prefered for nowadays treatment. For patients with impaired renal function, gemcitabine plus carboplatin (GCa) treatment is recommended. Overexpressions of Aurora A kinase and epidermal growth factor (EGF) were observed in bladder cancer cells. Our previously data demonstrate that curcumin significantly inhibited Aurora A gene expression, in part caused failure of various mitotic events and G2/M arrest of human bladder cancer cells. In this study, human bladder cancer T24 cells were treated with the existing chemotherapy (GC or GCa) in the presence and absence of curcumin. Addition of curcumin not only produced synergism using combination index analysis, but also raised the percentages of phases in sub-G1 (apoptosis rate) and G2/M using flow cytometry. Combinatio of cucurmin induced autophagy. Decreasing of phospho-Aurora A, p62, Beclin-1, phospho-PI3K, phospho-p70s6k, Atg12-Atg5 and increasing of LC3-II, phospho-mTOR, phospho-AKT, phospho-MEK, phospho-ERK were observed. Taken together, clinical drugs combined with curcumin not only inhibited activity of aurora a, but also promoted apoptosis and autophagy in T24 cells.

    第一章 緒論 1 第一節 膀胱癌 1 一、膀胱癌的發生 1 二、膀胱癌的臨床治療 2 第二節 薑黃素(Curcumin) 4 第三節 極光激酶(Aurora kinase) 6 第四節 計畫性細胞死亡(Programmed cell death,PCD) 8 一、細胞凋亡(Apoptosis) 8 二、細胞自噬(Autophagy) 11 第二章 研究目的 15 第三章 材料與方法 17 第一節 實驗藥品與試劑 17 第二節 實驗器材、耗材與實驗方法 20 一、細胞株繼代培養、解凍及保存 20 二、藥物配置 25 三、細胞存活率分析 27 四、細胞週期比例分析 28 五、細胞自噬比例分析 31 六、西方墨點法 33 七、Combination index計算方式 43 八、統計分析方法 43 第四章 結果 44 第一節 檢測FDA核准的臨床用藥合併使用後的效果 44 第二節 分析藥物合併使用後是否造成細胞週期改變 48 第三節 探討Curcumin合併使用FDA核准的臨床藥物是否透過抑制Aurora A路徑 52 第四節 調整Curcumin及FDA核准臨床用藥的濃度 55 第五節 分析藥物合併使用Curcumin後促T24細胞凋亡作用 61 第六節 藥物合併使用Curcumin後會引起T24細胞自噬作用 65 第七節 Curcumin合併使用FDA核准臨床用藥影響的路徑 69 第五章 討論 76 第六章 結論 81 第七章 參考文獻 82 圖次 Fig. 1 Percentage of inhibition of T24 cells in response to FDA-approved clinical drugs and Curcumin. 46 Fig. 2 Cytotoxicity of FDA-approved clinical drugs combined with Curcumin. 47 Fig. 3 The change of cell cycle distribution in response to FDA-approved clinical drugs in the presence and absence of Curcumin. 51 Fig. 4 Expressions of Aurora kinases in response to Curcumin combined with FDA-approved clinical drugs. 54 Fig. 5 Percentage of inhibition of T24 cells in response to FDA-approved clinical drugs and Curcumin. 58 Fig. 6 Combination index of T24 cells in response to FDA-approved clinical drugs and Curcumin. 60 Fig. 7 The change of cell cycle distribution in response to FDA-approved clinical drugs in the presence and absence of Curcumin. 63 Fig. 8 Curcumin 15 μM decreases activity both the pro-caspase 3and cleavaged-caspase 3. 64 Fig. 9 Effect of Curcumin combined with FDA-approved clinical drugs on autophagy of T24 cells. 67 Fig. 10 Curcumin induced increases in LC3-II and decreases in p62. 68 Fig. 11 Curcumin 15 μM downregulated activity of phospho-Aurora A . 71 Fig. 12 Curcumin 15 μM with FDA-approved clinical drugs or absence downregulated the expressions of Beclin-1. 72 Fig. 13 Curcumin 15 μM with FDA-approved clinical drugs or absence induced the activity of MEK/ERK pathway. 73 Fig. 14 Expression of Atg12-Atg5 and Atg5 with Curcumin combined with FDA-approved clinical drugs in T24 cells. 75   附錄 Appendix Fig. 1 Model. 104

    Adams, J. M., & Cory, S. (2007). The Bcl-2 apoptotic switch in cancer development and therapy. Oncogene, 26(9), 1324-1337. doi: 10.1038/sj.onc.1210220
    Althouse R, H. J., Tomatis L, Wilbourn J. (1979). Chemicals and industrial processes associated with cancer in humans. lARC monographs, IARC Monogr Eval Carcinog Risk Chem Hum 1–20(Suppl 1):1–71.
    Anand, P., Kunnumakkara, A. B., Newman, R. A., & Aggarwal, B. B. (2007). Bioavailability of curcumin: problems and promises. Mol Pharm, 4(6), 807-818. doi: 10.1021/mp700113r
    Anand, P., Thomas, S. G., Kunnumakkara, A. B., Sundaram, C., Harikumar, K. B., Sung, B., Tharakan S. T., Misra K., Priyadarsini I. K., Rajasekharan K. N., Aggarwal, B. B. (2008). Biological activities of curcumin and its analogues (Congeners) made by man and Mother Nature. Biochem Pharmacol, 76(11), 1590-1611. doi: 10.1016/j.bcp.2008.08.008
    Andrews, P. D., Knatko, E., Moore, W. J., & Swedlow, J. R. (2003). Mitotic mechanics: the auroras come into view. Curr Opin Cell Biol, 15(6), 672-683.
    Babchia, N., Calipel, A., Mouriaux, F., Faussat, A. M., & Mascarelli, F. (2010). The PI3K/Akt and mTOR/P70S6K signaling pathways in human uveal melanoma cells: interaction with B-Raf/ERK. Invest Ophthalmol Vis Sci, 51(1), 421-429. doi: 10.1167/iovs.09-3974
    Baehrecke, E. H. (2005). Autophagy: dual roles in life and death? Nat Rev Mol Cell Biol, 6(6), 505-510. doi: 10.1038/nrm1666
    Basile, V., Ferrari, E., Lazzari, S., Belluti, S., Pignedoli, F., & Imbriano, C. (2009). Curcumin derivatives: molecular basis of their anti-cancer activity. Biochem Pharmacol, 78(10), 1305-1315. doi: 10.1016/j.bcp.2009.06.105
    Bischoff, J. R., & Plowman, G. D. (1999). The Aurora/Ipl1p kinase family: regulators of chromosome segregation and cytokinesis. Trends Cell Biol, 9(11), 454-459.
    Bjorkoy, G., Lamark, T., Brech, A., Outzen, H., Perander, M., Overvatn, A., Stenmark, H., Johansen, T., Johansen, T. (2005). p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death. J Cell Biol, 171(4), 603-614. doi: 10.1083/jcb.200507002
    Boccardo, F., & Palmeri, L. (2006). Adjuvant chemotherapy of bladder cancer. Ann Oncol, 17 Suppl 5, v129-132. doi: 10.1093/annonc/mdj967
    Botrugno, O. A., Robert, T., Vanoli, F., Foiani, M., & Minucci, S. (2012). Molecular pathways: old drugs define new pathways: non-histone acetylation at the crossroads of the DNA damage response and autophagy. Clin Cancer Res, 18(9), 2436-2442. doi: 10.1158/1078-0432.ccr-11-0767
    Boya, P., Gonzalez-Polo, R. A., Casares, N., Perfettini, J. L., Dessen, P., Larochette, N., Metivier, D., Meley, D., Souquere, S., Yoshimori. T., Pierron, G., Condogno, P., Kroemer, G. (2005). Inhibition of macroautophagy triggers apoptosis. Mol Cell Biol, 25(3), 1025-1040. doi: Doi 10.1128/Mcb.25.3.1025-1040.2005
    Briassouli, P., Chan, F., Savage, K., Reis-Filho, J. S., & Linardopoulos, S. (2007). Aurora-A regulation of nuclear factor-kappaB signaling by phosphorylation of IkappaBalpha. Cancer Res, 67(4), 1689-1695. doi: 10.1158/0008-5472.can-06-2272
    Chan, W. H., & Wu, H. J. (2006). Protective effects of curcumin on methylglyoxal-induced oxidative DNA damage and cell injury in human mononuclear cells. Acta Pharmacol Sin, 27(9), 1192-1198. doi: 10.1111/j.1745-7254.2006.00374.x
    Cheetham, G. M. T., Knegtel, R. M. A., Coll, J. T., Renwick, S. B., Swenson, L., Weber, P., Lippke, J. A., Austen, D. A. (2002). Crystal Structure of Aurora-2, an Oncogenic Serine/Threonine Kinase. Journal of Biological Chemistry, 277(45), 42419-42422. doi: 10.1074/jbc.C200426200
    Chen, N., & Karantza-Wadsworth, V. (2009). Role and regulation of autophagy in cancer. Biochim Biophys Acta, 1793(9), 1516-1523. doi: 10.1016/j.bbamcr.2008.12.013S0167-4889(08)00436-9 [pii]
    Chen, S. S., Chang, P. C., Cheng, Y. W., Tang, F. M., & Lin, Y. S. (2002). Suppression of the STK15 oncogenic activity requires a transactivation-independent p53 function. Embo j, 21(17), 4491-4499.
    Chendil, D., Ranga, R. S., Meigooni, D., Sathishkumar, S., & Ahmed, M. M. (2004). Curcumin confers radiosensitizing effect in prostate cancer cell line PC-3. Oncogene, 23(8), 1599-1607. doi: 10.1038/sj.onc.1207284
    Chou, T. C., & Talalay, P. (1984). Quantitative analysis of dose-effect relationships: the combined effects of multiple drugs or enzyme inhibitors. Adv Enzyme Regul, 22, 27-55.
    Ciuffreda, L., Di Sanza, C., Incani, U. C., & Milella, M. (2010). The mTOR pathway: a new target in cancer therapy. Curr Cancer Drug Targets, 10(5), 484-495.
    Colquhoun, A. J., & Mellon, J. K. (2002). Epidermal growth factor receptor and bladder cancer. Postgraduate Medical Journal, 78(924), 584-589. doi: 10.1136/pmj.78.924.584
    da Silva, G. N., de Castro Marcondes, J. P., de Camargo, E. A., da Silva Passos Junior, G. A., Sakamoto-Hojo, E. T., & Salvadori, D. M. (2010). Cell cycle arrest and apoptosis in TP53 subtypes of bladder carcinoma cell lines treated with cisplatin and gemcitabine. Exp Biol Med (Maywood), 235(7), 814-824. doi: 10.1258/ebm.2010.009322
    DeGregorio, M., Lum, B., Holleran, W., Wilbur, B., & Sikic, B. (1986). Preliminary observations of intraperitoneal carboplatin pharmacokinetics during a phase I study of the Northern California Oncology Group. Cancer Chemotherapy and Pharmacology, 18(3), 235-238. doi: 10.1007/BF00273393
    Ferlay J, S. I., Ervik M, Dikshit R, Eser S, Mathers C, Rebelo M, Parkin DM, Forman D, Bray, F. (2012). GLOBOCAN 2012 v1.0, Cancer Incidence and Mortality Worldwide: IARC CancerBase No. 11 [Internet]. Retrieved Available from: http://globocan.iarc.fr, accessed on day/month/year.
    Fu, J., Bian, M., Jiang, Q., & Zhang, C. (2007). Roles of Aurora kinases in mitosis and tumorigenesis. Mol Cancer Res, 5(1), 1-10. doi: 10.1158/1541-7786.mcr-06-0208
    Furukawa, T., Kanai, N., Shiwaku, H. O., Soga, N., Uehara, A., & Horii, A. (2006). AURKA is one of the downstream targets of MAPK1/ERK2 in pancreatic cancer. Oncogene, 25(35), 4831-4839. doi: 10.1038/sj.onc.1209494
    Gandini, S., Botteri, E., Iodice, S., Boniol, M., Lowenfels, A. B., Maisonneuve, P., & Boyle, P. (2008). Tobacco smoking and cancer: a meta-analysis. Int J Cancer, 122(1), 155-164. doi: 10.1002/ijc.23033
    Giam, M., Huang, D. C., & Bouillet, P. (2008). BH3-only proteins and their roles in programmed cell death. Oncogene, 27 Suppl 1, S128-136. doi: 10.1038/onc.2009.50onc200950 [pii]
    Goel, A., Kunnumakkara, A. B., & Aggarwal, B. B. (2008). Curcumin as "Curecumin": from kitchen to clinic. Biochem Pharmacol, 75(4), 787-809. doi: 10.1016/j.bcp.2007.08.016
    Gonzalez-Polo, R. A., Boya, P., Pauleau, A. L., Jalil, A., Larochette, N., Souquere, S., Eskelinen, E. L., Pierron, G., Saftig, P., Kroemer, G. (2005). The apoptosis/autophagy paradox: autophagic vacuolization before apoptotic death. J Cell Sci, 118(14), 3091-3102. doi: Doi 10.1242/Jcs.02447
    Gupta, S. C., Patchva, S., & Aggarwal, B. B. (2013). Therapeutic roles of curcumin: lessons learned from clinical trials. AAPS J, 15(1), 195-218. doi: 10.1208/s12248-012-9432-8
    Hall MC, C. S., Dalbagni G, Pruthi RS, Seigne JD, Skinner EC, Wolf JS Jr, Schellhammer PF. (2007). Guideline for the Management of Nonmuscle Invasive Bladder Cancer: (Stages Ta,T1, and Tis): 2007 Update. American Urological Association Education and Research, Inc.
    Harada, H., Quearry, B., Ruiz-Vela, A., & Korsmeyer, S. J. (2004). Survival factor-induced extracellular signal-regulated kinase phosphorylates BIM, inhibiting its association with BAX and proapoptotic activity. Proc Natl Acad Sci U S A, 101(43), 15313-15317. doi: 10.1073/pnas.0406837101
    Hengartner, M. O. (2000). The biochemistry of apoptosis. Nature, 407(6805), 770-776. doi: 10.1038/35037710
    Huett, A., Goel, G., & Xavier, R. J. (2010). A systems biology viewpoint on autophagy in health and disease. Curr Opin Gastroenterol, 26(4), 302-309. doi: 10.1097/MOG.0b013e32833ae2ed00001574-201007000-00003 [pii]
    Hung, L. Y., Tseng, J. T., Lee, Y. C., Xia, W., Wang, Y. N., Wu, M. L., Chuang, Y. H., Lai, C. H., Chang, W. C. (2008). Nuclear epidermal growth factor receptor (EGFR) interacts with signal transducer and activator of transcription 5 (STAT5) in activating Aurora-A gene expression. Nucleic Acids Res, 36(13), 4337-4351. doi: 10.1093/nar/gkn417
    Itakura, E., Kishi, C., Inoue, K., & Mizushima, N. (2008). Beclin 1 Forms Two Distinct Phosphatidylinositol 3-Kinase Complexes with Mammalian Atg14 and UVRAG. Mol Biol Cell, 19(12), 5360-5372. doi: DOI 10.1091/mbc.E08-01-0080
    Jagetia, G. C., & Aggarwal, B. B. (2007). "Spicing up" of the immune system by curcumin. J Clin Immunol, 27(1), 19-35. doi: 10.1007/s10875-006-9066-7
    Janku, F., McConkey, D. J., Hong, D. S., & Kurzrock, R. (2011). Autophagy as a target for anticancer therapy. Nat Rev Clin Oncol, 8(9), 528-539. doi: 10.1038/nrclinonc.2011.71
    Jin, Z. J. (1980). [Addition in drug combination (author's transl)]. Zhongguo Yao Li Xue Bao, 1(2), 70-76.
    Kerr, J. F., Wyllie, A. H., & Currie, A. R. (1972). Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer, 26(4), 239-257.
    Komatsu, M., Waguri, S., Koike, M., Sou, Y. S., Ueno, T., Hara, T., Mizushima, N., Iwata, J., Ezaki, J., Murata, S., Hamazaki, J., Nishito, Y., Iemura, S., Natsume, T., Yanagawa, T., Uwayama, J., Warabi, E., Yoshida, H., Ishii, T., Kobayashi, A., Yamamoto, M., Yue, Z., Uchiyama, Y., Kominami, E., Tanaka, K. (2007). Homeostatic levels of p62 control cytoplasmic inclusion body formation in autophagy-deficient mice. Cell, 131(6), 1149-1163. doi: 10.1016/j.cell.2007.10.035
    Kondo, Y., Kanzawa, T., Sawaya, R., & Kondo, S. (2005). The role of autophagy in cancer development and response to therapy. Nat Rev Cancer, 5(9), 726-734. doi: 10.1038/nrc1692
    Lai, C. H., Tseng, J. T., Lee, Y. C., Chen, Y. J., Lee, J. C., Lin, B. W., Huang, T. C., Liu, Y. W., Leu, T. H., Liu, Y. W., Chen, Y. P., Chang, W. C., Hung, L. Y. (2010). Translational up-regulation of Aurora-A in EGFR-overexpressed cancer. J Cell Mol Med, 14(6b), 1520-1531. doi: 10.1111/j.1582-4934.2009.00919.x
    Larsen, K. B., Lamark, T., Overvatn, A., Harneshaug, I., Johansen, T., & Bjorkoy, G. (2010). A reporter cell system to monitor autophagy based on p62/SQSTM1. Autophagy, 6(6), 784-793. doi: 12510 [pii]
    Lavrik, I., Golks, A., & Krammer, P. H. (2005). Death receptor signaling. J Cell Sci, 118(Pt 2), 265-267. doi: 10.1242/jcs.01610
    Lee, Y. J., Soh, J. W., Jeoung, D. I., Cho, C. K., Jhon, G. J., Lee, S. J., & Lee, Y. S. (2003). PKC epsilon -mediated ERK1/2 activation involved in radiation-induced cell death in NIH3T3 cells. Biochim Biophys Acta, 1593(2-3), 219-229. doi: S0167488902003920 [pii]
    Li, J., Hou, N., Faried, A., Tsutsumi, S., Takeuchi, T., & Kuwano, H. (2009). Inhibition of autophagy by 3-MA enhances the effect of 5-FU-induced apoptosis in colon cancer cells. Ann Surg Oncol, 16(3), 761-771. doi: 10.1245/s10434-008-0260-0
    Liang, X. H., Jackson, S., Seaman, M., Brown, K., Kempkes, B., Hibshoosh, H., & Levine, B. (1999). Induction of autophagy and inhibition of tumorigenesis by beclin 1. Nature, 402(6762), 672-676. doi: 10.1038/45257
    Lim, J., Kim, H. W., Youdim, M. B., Rhyu, I. J., Choe, K. M., & Oh, Y. J. (2011). Binding preference of p62 towards LC3-ll during dopaminergic neurotoxin-induced impairment of autophagic flux. Autophagy, 7(1), 51-60.
    Limtrakul, P. (2007). Curcumin as chemosensitizer. Adv Exp Med Biol, 595, 269-300. doi: 10.1007/978-0-387-46401-5_12
    Lin, S. S., Huang, H. P., Yang, J. S., Wu, J. Y., Hsia, T. C., Lin, C. C., Lin, C. W., Kuo, C. L., Gibson, Wood, W., Chung, J. G. (2008). DNA damage and endoplasmic reticulum stress mediated curcumin-induced cell cycle arrest and apoptosis in human lung carcinoma A-549 cells through the activation caspases cascade- and mitochondrial-dependent pathway. Cancer Lett, 272(1), 77-90. doi: 10.1016/j.canlet.2008.06.031
    Liu, H. S., Ke, C. S., Cheng, H. C., Huang, C. Y., & Su, C. L. (2011). Curcumin-induced mitotic spindle defect and cell cycle arrest in human bladder cancer cells occurs partly through inhibition of aurora A. Mol Pharmacol, 80(4), 638-646. doi: 10.1124/mol.111.072512
    Liu, J., Mao, W., Ding, B., & Liang, C. S. (2008). ERKs/p53 signal transduction pathway is involved in doxorubicin-induced apoptosis in H9c2 cells and cardiomyocytes. Am J Physiol Heart Circ Physiol, 295(5), H1956-1965. doi: 10.1152/ajpheart.00407.2008
    Liu, Q., & Ruderman, J. V. (2006). Aurora A, mitotic entry, and spindle bipolarity. Proc Natl Acad Sci U S A, 103(15), 5811-5816. doi: 10.1073/pnas.0601425103
    Lockshin, R. A., & Zakeri, Z. (2004). Apoptosis, autophagy, and more. Int J Biochem Cell Biol, 36(12), 2405-2419. doi: 10.1016/j.biocel.2004.04.011
    Mancias, J. D., & Kimmelman, A. C. (2011). Targeting autophagy addiction in cancer. Oncotarget, 2(12), 1302-1306.
    Martinez-Lopez, N., Athonvarangkul, D., Mishall, P., Sahu, S., & Singh, R. (2013). Autophagy proteins regulate ERK phosphorylation. Nat Commun, 4, 2799. doi: 10.1038/ncomms3799
    Mizushima, N., Ohsumi, Y., & Yoshimori, T. (2002). Autophagosome formation in mammalian cells. Cell Struct Funct, 27(6), 421-429.
    Mizushima, N., Yoshimori, T., & Levine, B. (2010). Methods in mammalian autophagy research. Cell, 140(3), 313-326. doi: 10.1016/j.cell.2010.01.028S0092-8674(10)00063-2 [pii]
    Moll, U. M., Wolff, S., Speidel, D., & Deppert, W. (2005). Transcription-independent pro-apoptotic functions of p53. Curr Opin Cell Biol, 17(6), 631-636. doi: S0955-0674(05)00146-8 [pii]10.1016/j.ceb.2005.09.007
    Myeku, N., & Figueiredo-Pereira, M. E. (2011). Dynamics of the degradation of ubiquitinated proteins by proteasomes and autophagy: association with sequestosome 1/p62. J Biol Chem, 286(25), 22426-22440. doi: 10.1074/jbc.M110.149252
    Park, C., Kim, G. Y., Kim, G. D., Choi, B. T., Park, Y. M., & Choi, Y. H. (2006). Induction of G2/M arrest and inhibition of cyclooxygenase-2 activity by curcumin in human bladder cancer T24 cells. Oncol Rep, 15(5), 1225-1231.
    Pattingre, S., Espert, L., Biard-Piechaczyk, M., & Codogno, P. (2008). Regulation of macroautophagy by mTOR and Beclin 1 complexes. Biochimie, 90(2), 313-323. doi: 10.1016/j.biochi.2007.08.014
    Pyo, J. O., Jang, M. H., Kwon, Y. K., Lee, H. J., Jun, J. I., Woo, H. N., Cho, D. H., Choi, B., Lee, H., Kim, J. H., Mizushima, N., Oshumi, Y., Jung, Y. K. (2005). Essential roles of Atg5 and FADD in autophagic cell death: dissection of autophagic cell death into vacuole formation and cell death. J Biol Chem, 280(21), 20722-20729. doi: M413934200 [pii]10.1074/jbc.M413934200
    Qu, W., Xiao, J., Zhang, H., Chen, Q., Wang, Z., Shi, H., Gong, L., Chen, J., Liu, Y., Cao, R., Lv, J. (2013). B19, a novel monocarbonyl analogue of curcumin, induces human ovarian cancer cell apoptosis via activation of endoplasmic reticulum stress and the autophagy signaling pathway. Int J Biol Sci, 9(8), 766-777. doi: 10.7150/ijbs.5711
    Rasul, A., & M, T. (2013). Natural Compounds and Their Role in Autophagic Cell Signaling Pathways. doi: 10.5772/55447
    Ravikumar, B., Sarkar, S., Davies, J. E., Futter, M., Garcia-Arencibia, M., Green-Thompson, Z. W., Jimenez-Sanchez, M., Korolchuk, V. I., Lichtenberg, M., Luo, S., Massey, D. C., Menzies, F. M., Moreau, K., Narayanan, U., Renna, M., Siddiqi, F. H., Underwood, B. R., Winslow, A. R., Rubinsztein, D. C. (2010). Regulation of mammalian autophagy in physiology and pathophysiology. Physiol Rev, 90(4), 1383-1435. doi: 10.1152/physrev.00030.200990/4/1383 [pii]
    Reed, J. C. (1997). Bcl-2 family proteins: regulators of apoptosis and chemoresistance in hematologic malignancies. Semin Hematol, 34(4 Suppl 5), 9-19.
    Romero-Hernandez, M. A., Eguia-Aguilar, P., Perezpena-DiazConti, M., Rodriguez-Leviz, A., Sadowinski-Pine, S., Velasco-Rodriguez, L. A., Cáceres-Cortés, J. R., Arenas-Huertero, F. (2013). Toxic effects induced by curcumin in human astrocytoma cell lines. Toxicol Mech Methods, 23(9), 650-659. doi: 10.3109/15376516.2013.826768
    Saelens, X., Festjens, N., Vande Walle, L., van Gurp, M., van Loo, G., & Vandenabeele, P. (2004). Toxic proteins released from mitochondria in cell death. Oncogene, 23(16), 2861-2874. doi: 10.1038/sj.onc.12075231207523 [pii]
    Salminen, A., Kaarniranta, K., Kauppinen, A., Ojala, J., Haapasalo, A., Soininen, H., & Hiltunen, M. (2013). Impaired autophagy and APP processing in Alzheimer's disease: The potential role of Beclin 1 interactome. Prog Neurobiol, 106-107, 33-54. doi: 10.1016/j.pneurobio.2013.06.002
    Scharstuhl, A., Mutsaers, H. A., Pennings, S. W., Russel, F. G., & Wagener, F. A. (2009). Involvement of VDAC, Bax and ceramides in the efflux of AIF from mitochondria during curcumin-induced apoptosis. PLoS One, 4(8), e6688. doi: 10.1371/journal.pone.0006688
    Sella, A., & Kovel, S. (2012). Combination of gemcitabine and carboplatin in urothelial cancer patients unfit for cisplatin due to impaired renal or cardiac function. Int Braz J Urol, 38(1), 49-56.
    Shimizu, S., Kanaseki, T., Mizushima, N., Mizuta, T., Arakawa-Kobayashi, S., Thompson, C. B., & Tsujimoto, Y. (2004). Role of Bcl-2 family proteins in a non-apoptotic programmed cell death dependent on autophagy genes. Nat Cell Biol, 6(12), 1221-1228. doi: 10.1038/ncb1192
    Shishodia, S., Chaturvedi, M. M., & Aggarwal, B. B. (2007). Role of curcumin in cancer therapy. Curr Probl Cancer, 31(4), 243-305. doi: 10.1016/j.currproblcancer.2007.04.001
    Shubassi, G., Robert, T., Vanoli, F., Minucci, S., & Foiani, M. (2012). Acetylation: a novel link between double-strand break repair and autophagy. Cancer Res, 72(6), 1332-1335. doi: 10.1158/0008-5472.can-11-3172
    Sikora, E., Bielak-Zmijewska, A., Magalska, A., Piwocka, K., Mosieniak, G., Kalinowska, M., Widlak, P., Cymerman, I. A., Bujnicki, J. M. (2006). Curcumin induces caspase-3-dependent apoptotic pathway but inhibits DNA fragmentation factor 40/caspase-activated DNase endonuclease in human Jurkat cells. Mol Cancer Ther, 5(4), 927-934. doi: 10.1158/1535-7163.mct-05-0360
    Su, C. L., Wang, Y. T., Chang, M. H., Fang, K., & Chen, K. (2013). The Novel Heterocyclic Trioxirane [(1,3,5-Tris Oxiran-2-yl)Methyl)-1,3,5-Triazinane-2,4,6-Trione (TATT)] Exhibits a Better Anticancer Effect than Platinum-Based Chemotherapy by Induction of Apoptosis and Curcumin Further Enhances its Chemosensitivity. Cell Biochem Biophys. doi: 10.1007/s12013-013-9752-z
    Tang, D., Wu, D., Hirao, A., Lahti, J. M., Liu, L., Mazza, B., Kidd, V. J., Mak, T. W., Ingram, A. J. (2002). ERK activation mediates cell cycle arrest and apoptosis after DNA damage independently of p53. J Biol Chem, 277(15), 12710-12717. doi: 10.1074/jbc.M111598200M111598200 [pii]
    Tian, B., Wang, Z., Zhao, Y., Wang, D., Li, Y., Ma, L., Li, X., Li, J., Xiao, N., Tian, J., Rodriguez, R. (2008). Effects of curcumin on bladder cancer cells and development of urothelial tumors in a rat bladder carcinogenesis model. Cancer Lett, 264(2), 299-308. doi: 10.1016/j.canlet.2008.01.041
    Um, Y., Cho, S., Woo, H. B., Kim, Y. K., Kim, H., Ham, J., Kim, S. N., Ahn, C. M., Lee, S. (2008). Synthesis of curcumin mimics with multidrug resistance reversal activities. Bioorg Med Chem, 16(7), 3608-3615. doi: 10.1016/j.bmc.2008.02.012
    van Moorsel, C. J., Kroep, J. R., Pinedo, H. M., Veerman, G., Voorn, D. A., Postmus, P. E., Vermorken, J. B., van Groeningen, C. J., van der Vijgh, W. J., Peters, G. J. (1999). Pharmacokinetic schedule finding study of the combination of gemcitabine and cisplatin in patients with solid tumors. Ann Oncol, 10(4), 441-448.
    von der Maase, H., Hansen, S. W., Roberts, J. T., Dogliotti, L., Oliver, T., Moore, M. J., Bodrogi, I., Albers, P., Knuth, A., Lippert, C. M., Kerbrat, P., Sanchez, Rovira, P., Wersall, P., Cleall, S. P., Roychowdhury, D. F., Tomlin, I., Visseren-Grul, C. M., Conte, P. F. (2000). Gemcitabine and cisplatin versus methotrexate, vinblastine, doxorubicin, and cisplatin in advanced or metastatic bladder cancer: results of a large, randomized, multinational, multicenter, phase III study. J Clin Oncol, 18(17), 3068-3077.
    Walczak, H., & Krammer, P. H. (2000). The CD95 (APO-1/Fas) and the TRAIL (APO-2L) apoptosis systems. Exp Cell Res, 256(1), 58-66. doi: 10.1006/excr.2000.4840S0014-4827(00)94840-7 [pii]
    Wang, X., Zhou, Y. X., Qiao, W., Tominaga, Y., Ouchi, M., Ouchi, T., & Deng, C. X. (2006). Overexpression of aurora kinase A in mouse mammary epithelium induces genetic instability preceding mammary tumor formation. Oncogene, 25(54), 7148-7158. doi: 10.1038/sj.onc.1209707
    Warner, S. L., Bearss, D. J., Han, H., & Von Hoff, D. D. (2003). Targeting Aurora-2 kinase in cancer. Mol Cancer Ther, 2(6), 589-595.
    Wei, Y., Zou, Z., Becker, N., Anderson, M., Sumpter, R., Xiao, G., Kinch, L., Koduru, P., Christudass, C. S., Veltri, R. W., Grishin, N. V., Peyton, M., Minna, J., Bhagat, G., Levine, B. (2013). EGFR-mediated Beclin 1 phosphorylation in autophagy suppression, tumor progression, and tumor chemoresistance. Cell, 154(6), 1269-1284. doi: 10.1016/j.cell.2013.08.015
    Xiao, K., Jiang, J., Guan, C., Dong, C., Wang, G., Bai, L., Sun, J., Hu, C., Bai, C. (2013). Curcumin induces autophagy via activating the AMPK signaling pathway in lung adenocarcinoma cells. J Pharmacol Sci, 123(2), 102-109.
    Xie, Z., & Klionsky, D. J. (2007). Autophagosome formation: core machinery and adaptations. Nat Cell Biol, 9(10), 1102-1109. doi: 10.1038/ncb1007-1102
    Youle, R. J., & Strasser, A. (2008). The BCL-2 protein family: opposing activities that mediate cell death. Nat Rev Mol Cell Biol, 9(1), 47-59. doi: nrm2308 [pii]10.1038/nrm2308
    Yousefi, S., Perozzo, R., Schmid, I., Ziemiecki, A., Schaffner, T., Scapozza, L., Brunner, T., Simon, H. U. (2006). Calpain-mediated cleavage of Atg5 switches autophagy to apoptosis. Nat Cell Biol, 8(10), 1124-1132. doi: ncb1482 [pii]10.1038/ncb1482
    Zapata, J. M., Pawlowski, K., Haas, E., Ware, C. F., Godzik, A., & Reed, J. C. (2001). A diverse family of proteins containing tumor necrosis factor receptor-associated factor domains. J Biol Chem, 276(26), 24242-24252. doi: 10.1074/jbc.M100354200
    Zhang, X., Chen, L. X., Ouyang, L., Cheng, Y., & Liu, B. (2012). Plant natural compounds: targeting pathways of autophagy as anti-cancer therapeutic agents. Cell Prolif, 45(5), 466-476. doi: 10.1111/j.1365-2184.2012.00833.x
    Zhou, G. Z., Zhang, S. N., Zhang, L., Sun, G. C., & Chen, X. B. (2014). A synthetic curcumin derivative hydrazinobenzoylcurcumin induces autophagy in A549 lung cancer cells. Pharm Biol, 52(1), 111-116. doi: 10.3109/13880209.2013.816971
    Zhu, W., Cowie, A., Wasfy, G. W., Penn, L. Z., Leber, B., & Andrews, D. W. (1996). Bcl-2 mutants with restricted subcellular location reveal spatially distinct pathways for apoptosis in different cell types. Embo j, 15(16), 4130-4141.
    Zou, Z., Yuan, Z., Zhang, Q., Long, Z., Chen, J., Tang, Z., Zhu, Y., Chen, S., Xu, J., Yan, M., Wang, J., Liu, Q. (2012). Aurora kinase A inhibition-induced autophagy triggers drug resistance in breast cancer cells. Autophagy, 8(12), 1798-1810. doi: 10.4161/auto.22110
    姚欣, 王华庆, & 马腾骧. (2004). 膀胱癌系统化疗临床研究新进展. Chin J Urol, 25(12), 860-863.
    許悌, & 郭漢崇. (1990). 膀胱癌的治療趨勢. Tz'u-Chi Med J, 1990(2. NO.4), 323-333.

    下載圖示
    QR CODE