簡易檢索 / 詳目顯示

研究生: 沈婉萍
Wan-Ping Shen
論文名稱: 青鱂魚仔魚在鹽度適應過程之離子細胞功能研究–離子細胞功能之可塑性
The functional study of Mitochondrion-Rich Cells in medaka larvae subjected to salinity changes – Functional plasticity of Mitochondrion-Rich Cells
指導教授: 林豊益
Lin, Li-Yih
學位類別: 碩士
Master
系所名稱: 生命科學系
Department of Life Science
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 55
中文關鍵詞: 青鱂魚離子細胞鹽度適應離子調節掃描式離子選擇電極富含粒線體的細胞
英文關鍵詞: Mitochondrion-Rich cells, scanning ion-selective electrode technique, salinity changes, accessory cells, ion regulation, Japanese medaka
論文種類: 學術論文
相關次數: 點閱:257下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 魚類鰓上富含粒線體的細胞 ( mitochondrion-rich cells , MRCs ) 被認為是具有離子調節功能的細胞,在海水的環境中,這類細胞負責將過多的離子由魚體內排出至外界環境中,在淡水下則是負責離子吸收的功能。在海水中,Cl-主要是由MRCs的頂膜排出 ; 而Na+被認為由MRCs與輔助細胞 ( accessory cells , ACs ) 間形成的不緊密的細胞間隙擴散排出。前人研究發現在鹽度適應過程中,MRCs能持續存在於鹽度適應的過程,顯示MRCs可能進行功能轉變以因應鹽度轉變。然而,這些MRCs是否能夠直接在淡水型與海水型功能間轉換仍缺乏直接的證據。因此本研究目的是提出細胞功能轉變的直接證據,並探討在淡、海水轉移中MRCs型態與功能轉變間的相互關係。利用掃描式離子選擇電極(SIET)在青鱂魚仔魚表皮上分析MRCs的Na, Cl運送與型態變化。結果發現,在海水馴養下的青鱂魚仔魚體表可觀察到兩類型的MRCs : ( 一 ) 單一存在具有明顯對外開口的MRCs ( single-mitochondrion-rich cells, s-MRCs ) ; ( 二 ) 由AC與1~2顆 MRCs組成的多細胞複合體型態 (multicellular complex-mitochondrion-rich cells, mc-MRCs)。在有AC伴隨的MRCs的開口上,有明顯較高的Na+、Cl-排出; 無AC伴隨的s-MRCs開口上只有明顯的Cl-排出,無明顯的Na+排出,證明AC確實對排Na+扮演重要功能。此外,隨著適應的鹽度提昇,mc-MRCs出現比例會提高。利用SIET測量仔魚體表的Na+, Cl-濃度梯度變化,發現仔魚由淡水轉移至海水過程中,在轉移3小時內Na+呈現吸收,隨後逐漸轉為排出,至第5小時後達到與海水控制組相同的量,而Cl-排放在轉移後2小時即快速達到與海水適應組相同的量,顯示海水適應過程中Cl- 調節比Na+ 調節快。此外,由海水轉移至淡水過程中,在轉移30分鐘內,體表Na+, Cl-排出即快速降低至與淡水適應組相同的程度。在單一MRCs上測量Na+, Cl-離子流(ionic flux)發現,由海水轉移至淡水3-5分鐘內,MRCs 上Na+的排出量快速降低至原本的2-3 %以下,顯示出MRCs快速的調節能力。而利用活體的連續觀測方式,追蹤mc-MRCs及s-MRCs在海水轉移至淡水環境後,發現MRCs的開口有逐漸變大的現象。此外,mc-MRCs的AC會逐漸遠離MRC開口。本實驗直接證明海水型MRCs能夠在淡水適應過程中,直接轉變為淡水型的MRCs。

    Mitochondrion-rich (MR) cells (also called chloride cells) are specialized ionocytes in fish gill. These cells are involved in the ion secretion in seawater (SW) and ion uptake in fresh water (FW). It is believed that Cl− is secreted through the apical membrane of MRCs in SW, meanwhile, Na+ secretion occurs down its electrochemical gradient via a paracellular pathway between MRCs and accessory cells (ACs). Previous studies suggested that MRCs can change their morphology and function during extremely salinity changes such as FW to SW or vice versa, implying that MRCs posses a functional plasticity in ion regulation, i.e. taking up ions in FW and secreting ions in SW. However, evidence that can support this hypothesis is few and not convincing. In this study, a non-invasive technique, scanning ion-selective electrode technique (SIET) was applied to sequentially detect the Na+ and Cl- fluxes at the same MRCs in medaka larvae subjected to salinity changes. In vivo observation of SW-acclimated larvae revealed two types of MRCs: (1) single-MRCs (s-MRCs) which do not have a associated accessory cells (ACs) (2) multicellular complex- MRCs (mc-MRCs) which are consisted of MRCs and companied ACs. Using SIET, significant outward fluxes of Na+ and Cl- were detected at the apical surface of mc-MRCs, whereas only an outward flux of Cl- but not Na+ was detected at s-MRCs, indicating that ACs is required for Na+ secretion in SW fish. The presence of ACs increased with the salinity of medium to which the larvae were acclimated. During the transfer from FW to SW or vice versa, time-course changes of Na+ and Cl- gradients at the skin of the larvae were measured with SIET. An inward Na+ gradient was detected at the skin within 3 hrs after the FW to SW transfer, however, an outward Na+ gradient was detected after 3 hrs and the gradients gradually increased with time and reached a relatively steady value after 5 hrs. In addition, an outward Cl- gradient was also detected during the transfer and the value increased with time and reached a steady value at 2 hrs after the transfer, suggesting that Cl- regulation is faster than Na+ regulation in medaka larvae. In contrast, when the larvae were transferred from SW to FW, an instantaneous drop of outward Na+ and Cl- gradients was detected within 30 mins. At individual MRCs, a rapid decline of Na+ and Cl- fluxes also occurred after the SW to FW transfer. At the same time, both s-MRCs and mc-MRCs increased their apical opening sizes, and the ACs were found to depart from mc-MRCs during the transfer. Most importantly, a dramatic alteration of Na+ fluxes was found by sequentially measuring the same MRCs subjected to the transfer. Our data demonstrated that MRCs posses duel functions (ion uptake and ion secretion) and most importantly they can change their function from an ion secreting to an ion absorbing MRCs within 5 hrs.

    Table of Contents.........................................1 誌 謝.................................................2 摘 要.................................................3 Abstract..................................................5 Introduction..............................................7 Materials and Methods....................................17 Experimental Designs.....................................22 Results..................................................25 Discussion...............................................30 References...............................................35 Figures..................................................42

    References
    1.Alper SL, Darman RB, Chernova MN, Dahl NK. The AE gene
    family of Cl-/HCO3- exchangers. J Nephrol 15, Suppl 5:
    S41–S53, 2002.
    2.Alper SL. Molecular physiology of SLC4 anion exchangers.
    Exp Physiol 91: 153–161, 2006.
    3.Bayaa M, Vulesevic B, Esbaugh A, Braun M, Ekker M,
    Grosell M, Perry SF. The involvement of SLC26 anion
    exchangers in Cl-/HCO3-exchange in zebrafish (Danio
    rerio) larvae. J Exp Biol 212: 3283-3295, 2009.
    4.Chretien M, Pisam M. Cell renewal and differentiation in
    the gill epithelium of fresh- or salt-water-adapted
    euryhaline fish as revealed by [3H]-thymidine
    radioautography. Biol. Cell 56: 137–150, 1986.
    5.Chang IC, Lee T H, Yang C H, Wei YY, Chou FI, Hwang PP.
    Morphology and function of gill mitochondria-rich cells
    in fish acclimated to different environments. Physiol
    Biochem Zool 74: 111-119, 2001.
    6.Chang IC, Wei YY, Chou FI, Hwang PP. Stimulation of Cl-
    uptake and morphological changes in gill mitochondria-
    rich cells in freshwater tilapia(Oreochromis
    mossambicus). Physiol Biochem Zool 76: 544-552, 2003.
    7.Claude P, and Goodenough D A. Fracture faces of zonulae
    occludentes from "tight" and "leaky" epithelia. J Cell
    Biol 58: 390-400, 1973.
    8.Daborn K, Cozzi RR F, Marshall WS. Dynamics of pavement
    cell–chloride cell interactions during abrupt salinity
    change in Fundulus heteroclitus. J Exp Biol 204: 1889-
    1899, 2001.
    9.Degnan KJ, Zadunaisky J A. Passive Sodium Movements
    Across the Opercular Epithelium: The Paracellular Shunt
    Pathway and Ionic Conductance.J Membrane Biol 55: 175-
    185, 1980.
    10.Degnan KJ. The role of K+ and Cl- conductances in
    chloride secretion by the opercular epithelium. J Exp
    Zool 236: 19- 25, 1985.
    11.Esaki M, Hoshijima K, Kobayashi S, Fukuda H, Kawakami K,
    Hirose S.Visualization in zebrafish larvae of Na+ uptake
    in mitochondria-rich cells whose differentiation is
    dependent on foxi3a. Am J Physiol Regul Integr Comp
    Physiol 292: R470-R480, 2007.
    12.Evans DH. Kinetic studies of ion transport by fish gill
    epithelium. Am J Physiol Regul Integr Comp Physiol 238:
    R224–R230, 1980.
    13.Evans DH, Piermarini PM, Choe KP. The multifunctional
    fish gill: dominant site of gas exchange,osmoregulation,
    acid-base regulation, and excretion of nitrogenous
    waste. Physiol Rev 85: 97-177, 2005.
    14.Evans DH. Teleost fish osmoregulation: what have we
    learned since August Krogh, Homer Smith, and Ancel Keys.
    Am J Physiol Regul Integr Comp Physiol 295: R704–R713,
    2008.
    15.Flemmer AW, Monette MY, Djurisic M, Dowd B, Darman R,
    Gimenez I, Forbush B. Phosphorylation state of the Na+-
    K+-Cl- cotransporter ( NKCC1 ) in the gills of Atlantic
    killifish (Fundulus heteroclitus ) during acclimaion to
    water of varying salinity. J Exp Biol213: 1558-1566,
    2010.
    16.Foskett JK, Scheffey C. The chloride cell: definitive
    identification as the salt-secretory cell in
    teleosts.Science 215: 164–166, 1982.
    17.Flynt AS, Thatcher EJ, Burkewitz K, Li N, Liu Y, Patton
    JG. miR-8 microRNAs regulate the response to osmotic
    stress in zebrafish embryos. J Cell Biol 185: 115–127,
    2009.
    18.Galvez F, Reid SD., Hawkings G, Goss GG. Isolation and
    characterization of mitochondria-rich cell types from
    the gill of freshwater rainbow trout. Am. J. Physiol.
    Regul Integr Comp Physiol 282: R658-R668, 2002.
    19.Hiroi J, Kaneko T, Tanaka, M. In vivo sequential changes
    in chloride cell morphology in the yolk-sac membrane of
    Mozambique tilapia (Oreochromis mossambicus) embryos and
    larvae during seawater adaptation. J Exp Biol202: 3485-
    3495, 1999.
    20.Hiroi J, McCormick SD, Ohtani-Kaneko R, Kaneko T.
    Functional classification of mitochondrion-rich cells in
    euryhaline Mozambique tilapia (Oreochromis mossambicus)
    embryos, by means of triple immunofluorescence staining
    for Na+/K+-ATPase, Na+/K+/2Cl– cotransporter and CFTR
    anion channel. J ExpBiol208: 2023-2036, 2005.
    21.Hiroi J, Yasumasu S, McCormick SD, Hwang PP, Kaneko T.
    Evidence for an apical Na-Cl cotransporter involved in
    ion uptake in a teleost fish. J Exp Biol 211: 2584-2599,
    2008.
    22.Hoffmann EK, Schettino T, Marshall WS. The role of
    volume-sensitive ion transport systems in regulation of
    epithelial transport. Comparative Biochemistry and
    Physiology, Part A 148: 29-43, 2007.
    23.Hossler FE. Gill arch of the mullet, Mugil cephalus,
    III: rate of response to salinity change. Am J Physiol.
    238: R160–R164, 1980.
    24.Hootman SR, Philpott CW. Accessory cells in teleost
    branchial epithelium. Am J Physiol Regul Integr Comp
    Physiol 238: R199–R206, 1980.
    25.Horng JL, Hwang PP, Shih TH, Wen ZH, Lin, CS, Lin LY.
    Chloride transport in mitochondrion-rich cells of
    euryhaline tilapia (Oreochromis mossambicus) larvae. Am
    J Physiol Cell Physiol 297: C845–C854, 2009.
    26.Hwang PP, Sun CM, Wu SM. Changes of plasma osmolality,
    chloride concentration and gill Na-K-ATPases activity in
    tilapia Oreochromis mossambicus during seawater
    acclimation. Mar Biol 100: 295–299, 1989.
    27.Hwang PP, Hirano R. Effects of environmental salinity of
    intercellular organization and junctional structure of
    chloride cells in early stages of teleost development. J
    Exp Zool 236:115-126, 1985.
    28.Hwang PP. Salinity effects on development of chloride
    cells in the larvae of ayu(Plecoglossus
    altivelis).MarBiol107: 1-7, 1990.
    29.Hwang PP, Lee TH. New insights into fish ion regulation
    and mitochondrion-rich cells. Comp Biochem Physiol, Part
    A 148: 479-497, 2007.
    30.Hwang PP. Ion uptake and acid secretion in zebrafish
    (Danio rerio).J ExpBiol212: 1745-1752, 2009.
    31.Inokuchi M, Hiroi J, Watanabe S, Lee KM, Kaneko T. Gene
    expression and morphological localization of NHE3, NCC
    and NKCC1a in branchial mitochondria-rich cells of
    Mozambique tilapia (Oreochromis mossambicus)
    acclimated to a wide range of salinities. Comp Biochem
    Physiol A Mol Integr Physiol 151: 151-158, 2008.
    32.Inoue K, Takei Y. Diverse adaptability in Oryzias
    species to high environmental salinity. Zoological
    Science 19:727–734, 2002.
    33.Inoue K, Takei Y. Asian medaka fishes offer new models
    for studying mechanisms of seawater adaptation. Comp
    Biochem Physiol, Part B 136:635–645, 2003.
    34.Karnaky KJJ, Kinter LB, Kinter WB, Stirling CE. Teleost
    chloride cell. II. Autoradiographic localization of gill
    Na,K-ATPase in killifish Fundulus heteroclitus adapted
    to low and high salinity environments. J Cell Biol 70:
    157–177, 1976.
    35.Katoh F, Kaneko T. Short-term transformation and long-
    term replacement of branchial chloride cells in
    killifish transferred from seawater to freshwater,
    revealed by morphofunctional observations and a newly
    established‘time-differential double fluorescent
    staining’ technique. J Exp Biol 206:4113-4123, 2003.
    36.Keys AB, Willmer EN. “Chloride-secreting cells” in the
    gills of fishes with special reference to the common
    eel. J Physiol Lond 76: 368–378, 1932.
    37.Krogh A. Osmotic regulation in freshwater fishes by
    active absorption of chloride ions. Z Vergl Physiol 24:
    656–666, 1937.
    38.Lasker R, Threadgold L. "Chloride cells" in the skin of
    the larval sardine. Exp.Cell Res. 52: 582-590, 1968.
    39.Laurent P, Dunel S. Morphology of gill epithelia in
    fish. Am J Physiol Regul Integr Comp Physiol 238: R147–
    R159, 1980.
    40.Lee TH, Hwang PP, Lin HC, Huang FL. Mitochondria-rich
    cells in the branchial epithelium of the teleost,
    Oreochromis mossambicus, acclimated to various hypotonic
    environments. Fish Physiol Biochem 15: 513-523, 1996.
    41.Lehrich RW, Aller SG, Webster P, Marino CR, Forrest JN,
    Jr.Vasoactive intestinal peptide, forskolin, and
    genistein increase apical CFTR trafficking in the rectal
    gland of the spiny dogfish, Squalus acanthias. Acute
    regulation of CFTR trafficking in an intact epithelium.
    J Clin Invest 101: 737–745, 1998.
    42.Lin CH, Huang CL, Yang CH, Lee TH, Hwang PP. Time-course
    changes in the expression of Na, K-ATPase and the
    morphometry of mitochondrion-rich cells in gills of
    euryhaline tilapia (Oreochromis mossambicus) during
    freshwater acclimation. J Exp Zool A Comp Exp Biol
    301A:85-96, 2004.
    43.Lin LY, Hwang PP. Modification of morphology and
    function of integument mitochondria-rich cells in
    tilapia larvae (Oreochromis mossambicus) acclimated
    to ambient chloride levels. Physiol Biochem Zool 74: 469-
    476, 2001.
    44.Lin LY, Horng JL, Kunkel JG, Hwang PP. Proton pump-rich
    cell secretes acid in skin of zebrafish larvae. Am J
    Physiol Cell Physiol 290: C371–C378, 2006.
    45.Maetz J. Aspects of adaptation to hypo-and hyper-osmotic
    environments. In: Biochemical and Biophysical
    Perspectives in Marine Biology, vol. 1, edited by
    Malins DC, Sargeant JR., London: Academic Press, 1974,
    p. 1-167.
    46.Mancera JM, McCormick SD. Rapid activation of gill
    Na+,K+- ATPase in the euryhaline teleost Fundulus
    heteroclitus. J Exp Zool 287: 263–274, 2000.
    47.Mandel LJ, Curran PF. Response of the frog skin to
    steady-state voltage clamping. I. The shunt pathway. J.
    Gen.Physiol. 59: 503, 1972.
    48.Marshall WS, Bryson SE, Garg D.α2-adrenergic inhibition
    of chloride transport by opercular epithelium is
    mediated by intracellular Ca2+. Proc Natl Acad Sci USA
    90: 5504-5508, 1993.
    49.Marshall WS, Bryson SE. Transport mechanisms of seawater
    teleost chloride cells, an inclusive model of a
    multifunctional cell. Comp. Biochem. Physiol. 119A: 97–
    106, 1998.
    50.Marshall WS, Bryson SE, Luby T. Control of Epithelial Cl- Secretion by basolateral osmolality in the euryhaline
    teleost Fundulus Heteroclitus .The Journal of
    Experimental Biology 203: 1897–1905, 2000.
    51.Marshall WS, Lynch EM, Cozzi RR. Redistribution of
    immunofluorescence of CFTR anion channel and NKCC
    cotransporter in chloride cells during adaptation of the
    killifish Fundulus heteroclitus to sea water.
    J Exp Biol 205: 1265–1273, 2002.
    52.Marshall WS. Rapid regulation of NaCl secretion by
    estuarine teleost fish:coping strategies for short-
    duration freshwater exposures. Biochim Biophys Acta
    1618: 95-105, 2003.
    53.Marshall WS, Cozzi RR, Pelis RM, McCormick SD. Cortisol
    receptor blockade and seawater adaptation in the
    euryhaline teleost Fundulus heteroclitus. J Exp Zoolog A
    Comp Exp Biol 303:132-142,2005a.
    54.Marshall WS, Ossum CG, Hoffmann EK. Hypotonic shock
    mediation by p38 MAPK, JNK, PKC, FAK, OSR1 and SPAK in
    osmosensing chloride secreting cells of killifish
    opercular epithelium. The Journal of Experimental
    Biology 208: 1063-1077, 2005b.
    55.Marshall WS, Katoh F, Main HP, Sers N, Cozzi RRF. Focal
    adhesion kinase and β1 integrin regulation of Na+, K+,
    2Cl− cotransporter in osmosensing ion transporting cells
    of killifish, Fundulus heteroclitus. Comp Biochem
    Physiol A.150:288-300, 2008.
    56.Marsigliante S, Muscella A,Vilella S, Storelli C.
    Dexamethasone modulates the activity of the eel
    branchial Na+/K+ATPase in both chloride and
    pavement cells. Life Sci 66:1663–1673.2000.
    57.McCormick SD. Hormonal control of gill Na+,K+-ATPase and
    chloride cell function. In: Wood CM, Shuttleworth TJ
    (eds) Cellular and molecular approaches to fish ionic
    regulation.Academic Press, San Diego,1995, pp
    285–315.
    58.McLamore ES, Porterfield DM, Banks MK. Non-invasive self-
    referencing electrochemical sensors for quantifying real-
    time biofilm analyte flux. Biotechnology Bioengineering
    102: 791-799, 2009.
    59.Miyamoto T, Machida T, Kawashima S. Influence of
    environmental salinity on the development of chloride
    cells of freshwater and brackish-water medaka,
    Oryzias latipes. ZoolSci3: 859–865, 1986.
    60.Ohana E, Yang D, Shcheynikov N, Muallem S. Diverse
    transport modes by the Solute Carrier 26 family of anion
    transporters. J Physiol 587: 2179–2185, 2009.
    61.Perry SF. The chloride cell: structure and function in
    the gills of freshwater fishes. Annu Rev Physiol 59: 325-
    347, 1997.
    62.Perry SF, Vulesevic B, Grosell M, Bayaa M. Evidence that
    SLC26 anion transporters mediate branchial chloride
    uptake in adult zebrafish (Danio rerio). Am J Physiol
    Regul Integr Comp Physiol 297: R988-R997, 2009.
    63.Philpott CW. Tubular system membranes of teleost
    chloride cells: osmotic response and transport sites. Am
    J Physiol 238: R171–184, 1980.
    64.Pisam M, Caroff A, Rambourg A. Two types of chloride
    cells in the gill epithelium of a freshwater-adapted
    euryhaline fish: Lebistes reticulatus; their
    modification during adaptation to salt water. Am J Anat
    179: 40-50, 1987.
    65.Pisam M, Auperin B, Prunet P, Rambourg A. Effects of
    prolactin on alpha and beta chloride cells in the gill
    epithelium of the saltwater adapted tilapia
    "Oreochromis niloticus". Anat Rec 235: 275-284, 1993.
    66.Pisam M, LeMoal C, Auperin B, Prunet P, Rambourg A.
    Apicalstructures of “mitochondria-rich” alpha and beta
    cells in euryhaline fish gill: their behavior in various
    living conditions. Anat Rec 241: 13-24, 1995.
    67.Pushkin A, Kurtz I. SLC4 base ( HCO3-, CO32-)
    transporters: classification,function, structure,
    genetic diseases, and knockout models. Am J Physiol
    Renal Physiol 290: F580–F599, 2006.
    68.Randall DJ, Burggren WW, French K. Eckert Animal
    Physiology:Mechanisms and Adaptations. 5th edition. New
    York: Freeman, 2002, p.588-620.
    69.Reid SD, Hawkings G S, Galvez F, Goss GG. Localization
    and characterization of phenamil-sensitive Na+ influx in
    isolated rainbow trout gill epithelial cells. J Exp Biol
    206: 551-559, 2003.
    70.Romero MF, Fulton CM, Boron WF. The SLC4 family of HCO3-
    transporters. Pflugers Arch 447: 495–509, 2004.
    71.Romero MF, Chang MH, Plata C, Zandi-Nejad K, Mercado A,
    Broumand V, Sussman CR, Mount DB. Physiology of
    electrogenic SLC26 paralogues.Novartis Found Symp 273:
    126–138, 2006.
    72.Sakamoto T, Yokota S, Ando M. Rapid morphological
    oscillation of mitochondria-rich cell in estuarine
    mudskipper following salinity changes. J
    Exp Zool 286: 666-669, 2000.
    73.Sardet C, Pisam M, Maetz J. The surface epithelium of
    teleostean fish gills. J Cell Biol 80: 96–117, 1979.
    74.Shaw JR, Denry Sato J, VanderHeide J, LaCasse T,
    Stanton CR, Lankowski A, Stanton SE, Chapline C,
    Coutermarsh B, Barnaby R,Karlson K, Stanton B.A. The
    role of SGK and CFTR in acute adaptation to
    seawater in Fundulus Heteroclitus. Cell Physiol Biochem
    22: 69-78, 2008.
    75.Shih TH, Horng JL, Hwang PP, Lin LY. Ammonia excretion
    by the skin of zebrafish (Danio rerio) larvae. Am J
    Physiol Cell Physiol 295: C1625-C1632,2008.
    76.Shiraishi K, Kaneko T, Hasegawa S, Hirano T. Development
    of multicellular complexes of chloride cells in the yolk-
    sac membrane of tilapia(Oreochromis mossambicus) embryos
    and larvae in seawater. Cell Tissue Res 288: 583–590,
    1997.
    77.Sindic A, Chang MH, Mount DB, Romero MF. Renal
    physiology of SLC26 anion exchangers. Curr Opin Nephrol
    Hypertens 16: 484–490, 2007.
    78.Smith PJS, Hammar K, Porterfield DM, Sanger RH,
    Trimarchi JR.Self-referencing, non-invasive, ion
    selective electrode for single cell detection
    of trans-plasma membrane calcium flux. Microscopy
    Research and Technique 46: 398-417, 1999.
    79.Smith HW. The absorption and excretion of water and
    salts by marine teleosts. Am J Physiol 93: 480–505,
    1930.
    80.Soleimani M, Xu J. SLC26 chloride/base exchangers in the
    kidney in health and disease. Seminars in Nephrology 26:
    375–385, 2006.
    81.Towle DW, Gilman ME, Hempel JD. Rapid modulation of gill
    Na++K+-dependent ATPase activity during rapid
    acclimation of the killifish Fundulus heteroclitus to
    salinity change. J Exp Zool 202: 179–186, 1977.
    82.Tsai JC, Hwang PP. Effects of wheat germ agglutinin and
    colchicines on microtubules of the mitochondria-rich
    cells and Ca2+ uptake in tilapia(Oreochromis
    mossambicus) larvae. J Exp Biol 201: 2263-2271, 1998.
    83.Uchida K, Kaneko T, Miyazaki H, Hasegawa S, Hirano T.
    Excellent salinity tolerance of Mozambique tilapia
    (Oreochromis mossambicus): Elevated chloride cell
    activity in the branchial and opercular epithelia of the
    fish adapted to concentrated seawater. Zool Sci 17: 149-
    160, 2000.
    84.Wang YF, Tseng YC, Yan JJ, Hiroi J, Hwang PP. Role of
    SLC12A10.2, a Na-Cl cotransporter-like protein, in a Cl
    uptake mechanism in zebrafish (Danio rerio). Am J
    Physiol Regul Integr Comp Physiol 296: R1650-R1660,2009.
    85.Wendelaar Bonga S, van der Meij CJM. Degeneration and
    death, by apoptosis and necrosis, of the pavement and
    chloride cells in the gills of the teleost Oreochromis
    mossambicus. Cell Tissue Res 255: 235–243, 1989.
    86.Wu S C, Horng J L, Liu ST, Hwang PP, Wen ZH, Lin C S,
    Lin, LY. Ammonium dependent sodium uptake in
    mitochondrion-rich cells of medaka (Oryzias latipes)
    larvae. Am J Physiol Cell Physiol 298:C237-C250,2010.
    87.Zadunaisky JA. The chloride cell: the active transport
    of chloride and the paracellular pathways. In: Fish
    Physiology. Vol. 10B, edited by Hoar WS,
    Randall DJ. Orlando: Academic Press, 1984, p. 129-176.
    88.Zadunaisky J A, Balla M, Colon DE. A reduction in
    chloride secretion by lowered osmolarity in chloride
    cells of Fundulus heteroclitus. Bull. Mt Desert
    Island Biol. Lab. 24, 52 (Abstract), 1997.

    下載圖示
    QR CODE